
Nature Human Behaviour

nature human behaviour

https://doi.org/10.1038/s41562-025-02157-xArticle

Human motor cortex encodes complex
handwriting through a sequence of stable
neural states

Yu Qi   1,2,3,4,7 , Xinyun Zhu   4,7, Xinzhu Xiong4,7, Xiaomeng Yang4, Nai Ding5,
Hemmings Wu   6, Kedi Xu5, Junming Zhu6 , Jianmin Zhang   6 &
Yueming Wang   2,4

How the human motor cortex (MC) orchestrates sophisticated sequences of
!ne movements such as handwriting remains a puzzle. Here we investigate
this question through Utah array recordings from human MC during
attempted handwriting of Chinese characters (n = 306, each consisting of
6.3 ± 2.0 strokes). We !nd that MC activity evolves through a sequence of
states corresponding to the writing of stroke fragments during complicated
handwriting. The directional tuning curve of MC neurons remains stable
within states, but its gain or preferred direction strongly varies across
states. By building models that can automatically infer the neural states
and implement state-dependent directional tuning, we can signi!cantly
better explain the !ring pattern of individual neurons and reconstruct
recognizable handwriting trajectories with 69% improvement compared
with baseline models. Our !ndings unveil that skilled and sophisticated
movements are encoded through state-speci!c neural con!gurations.

Humans are superb at controlling sophisticated fine movements,
such as writing, typing and musical performance1,2. These sophis-
ticated motoric behaviours are often decomposed into a sequence
of simpler movements3–6. For example, a word is decomposed into a
sequence of letters, a letter can be further decomposed into strokes,
and even a stroke may involve a complex movement trajectory. Such
decomposition can reduce the complexity and shorten the timescale
of each movement unit, which is of particular importance for the
motor cortex (MC), since neurons in the MC generally show relatively
simple tuning to movement features7–12, and the tuning varies over
relatively long timescales13. It remains unclear, however, if primitive
units exist during fine movement and how such units may be encoded
in the MC.

Handwriting, a skill developed through years of deliberate
practice, serves as an example of sophisticated fine motor control
in humans. This study investigated the neural basis of handwriting
by recording single-unit neural activity from human MC with two
96-channel Utah microelectrode arrays in the left hand knob area of
the precentral gyrus14 (Fig. 1a and Supplementary Fig. 1a). We studied
attempted writing of Chinese characters (Fig. 1b,c), which are highly
complex (>3,500 frequent characters composed by 32 types of stroke)
and pose a great challenge for motor control. We identified that, during
the writing of a character, the directional tuning of neurons alternates
among a few stable states, each encoding the writing of multiple dif-
ferent small fragments of a character (Fig. 1d–f). Furthermore, the
neuronal tuning during handwriting clearly changes across states

Received: 27 June 2024

Accepted: 28 February 2025

Published online: xx xx xxxx

 Check for updates

1Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, MOE Frontier Science Center for Brain Science and Brain-Machine Integration,
Zhejiang University, Hangzhou, China. 2NANHU Brain-Computer Interface Institute, Hangzhou, China. 3State Key Lab of Brain-Machine Intelligence,
Zhejiang University, Hangzhou, China. 4College of Computer Science, Zhejiang University, Hangzhou, China. 5Key Laboratory for Biomedical
Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China. 6Second
Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China. 7These authors contributed equally: Yu Qi, Xinyun Zhu, Xinzhu Xiong.

 e-mail: qiyu@zju.edu.cn; dr.zhujunming@zju.edu.cn; ymingwang@zju.edu.cn

http://www.nature.com/nathumbehav
https://doi.org/10.1038/s41562-025-02157-x
http://orcid.org/0000-0002-9789-8907
http://orcid.org/0009-0007-3820-4761
http://orcid.org/0000-0001-9665-2617
http://orcid.org/0000-0002-3184-1502
http://orcid.org/0000-0001-7742-0722
http://crossmark.crossref.org/dialog/?doi=10.1038/s41562-025-02157-x&domain=pdf
mailto:qiyu@zju.edu.cn
mailto:dr.zhujunming@zju.edu.cn
mailto:ymingwang@zju.edu.cn

Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02157-x

direction could not well explain neural responses to characters. In
the following, to facilitate discussion, we loosely defined two catego-
ries of neurons: neurons not well explained by the directional tuning
model were referred to as the complex-tuning neurons (n = 115 under
the criterion that R2 < 0.1 and FD ≥ 1.4, shown in blue in Fig. 2a), and
neurons well explained by the directional tuning model were referred
to as simple-tuning neurons (n = 64 under the criterion that R2 ≥ 0.1 and
FD ≥ 1.4, shown in magenta in Fig. 2a).

To analyse why the directional tuning model failed to perfectly
predict the neuronal firing during character writing (as is evidenced
by the relatively low R2 of the model), we illustrated the firing pattern
of example neurons by overlaying the neural firing rate during writing
on the character trajectory. We observed two general phenomena that
were illustrated by two example neurons. First, some neurons reliably
responded during the writing of a small fragment of a character, but did
not respond during the writing of other fragments that involved move-
ments in the same direction. For example, the same downward vertical
movement was involved when writing two characters, that is, ‘干’ and ‘于’,
with highly similar orthographical forms but different pronunciations
and meanings. A complex-tuning neuron, however, responded differ-
ently during the same continuous downward movement in the two
characters: it responded to the movement for ‘于’ but did not respond
for ‘干’ (Fig. 2b).

Second, some neurons responded to different movement direc-
tions in different character fragments. For example, the same neuron
may respond to leftward (for example, stroke 1 in ‘手’), rightward (for
example, stroke 2 in ‘手’) and downward (for example, first portion of

(Fig. 1g). Computational models that decompose the writing process
into a sequence of states better explain spiking activity from individual
neurons (229% change) and better decode the handwriting based on
the neural population (69% change; Fig. 1h), compared with a model
that assumes stable neuronal tuning throughout the writing of a Chi-
nese character.

Results
Evidence of state-dependent encoding during handwriting
The participant performed attempted handwriting Chinese characters
while observing virtual handwriting in the video (Fig. 1a–c, Supple-
mentary Fig. 1a–c and Supplementary Video 1). We recorded 2,850
neurons across 20 experimental sessions (Supplementary Text), and
each character was written 3 times. We first analysed whether some
neurons reliably responded during the writing of individual characters
using the Fisher’s discriminant value (FD), which was higher if a neuron
generated similar responses when writing the same character twice
than when writing two different characters (Fig. 2a and Supplementary
Text). A number of neurons showed FD much higher than the chance
level, that is, 1.0 ± 0.05 (M ± s.d., estimated by shuffling the responses
across characters), demonstrating reliable responses during character
writing. We next analysed whether the reliable neural responses to
characters could be explained by the classic velocity-based directional
tuning model8,9,15. The reliability of neural response to individual charac-
ters, quantified by the FD, only had a moderate correlation with neural
sensitivity to velocity direction, quantified by the R2 of the directional
tuning model (R = 0.46). In other words, neuronal tuning to velocity

(wàn)
Ten

thousand

1

2
3

Stroke
fragments

Neuronal
activity

cs

An
te

rio
r

Po
ste

rio
r

Right

Left

Array BArray A

1 mm

Delay
(1.0–3.0 s) 4.0–9.0 s 1.5 s

Go cue

Trial 1 Trial 2

Trial endWriting

=

Stroke 1 Stroke 2 Stroke 3

1 2 3 1 3 4 5 State
sequence

Preferred
direction

Direction

Fi
rin

g
ra

te
State 1 State 2 State 3

Neural recording and the handwriting task

N
eu

ro
ns

Mode
shift

Mode
shift

2π0 2π0 2π0

MC programmes handwriting by sequencing a small set of stable states

a

c

b

d

f

Stroke
sequence

State-dependent tuning modes
at single unit level

g

e

Tuning curves deviated among states

State-dependent neural decoder
reconstruct recognizable characters

State-independent
decoder

State-dependent
decoder

h

Prepare: Prepare:

Fig. 1 | The handwriting task and neural representation during attempted
handwriting. a, The participant has two 96-channel Utah intracortical
microelectrode arrays implanted in the left MC. Both arrays (array A and array B)
are positioned in the hand knob area, approximately 1 cm apart from each other.
b, The participant is instructed to attempt handwriting under video guidance
(Supplementary Video 1). c, Trial design schematic. Each trial consists of a single
character displayed on the screen. A trial begins with the target character being
displayed on the screen (prepare), followed by a go cue (green light), and acted

writing of the character stroke by stroke (Methods). d, Writing of an example
Chinese character in terms of strokes (top). e–g, Summary of the main findings.
MC programmes character writing by sequencing a small set of stable states
(f), each encoding a set of specific stroke fragments (e). A set of neurons exhibits
directional tuning that is stable within each state but strongly variable across
states (g). h, Writing movements were decoded using both state-dependent
(first identifying the neural state and then performing state-dependent decoding
for each fragment) and state-independent neural decoders Source data.

http://www.nature.com/nathumbehav

Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02157-x

stroke 4 in ‘手’) movements when writing some fragments of a char-
acter (Fig. 2c), but do not respond to the same movement directions
when writing other fragments (for example, first portion of stroke
2 in ‘写’ for rightward movement, first portion of stroke 4 in ‘手’ for
downward movement). Even for simple-tuning neurons, we observed
that, although strong firing was mainly observed for a certain move-
ment direction, the neuron may or may not fire when the movement
direction appears (Fig. 2d). In other words, the neuron was tuned to a
movement direction but its response gain seemed to be modulated
during the writing process. Therefore, the directional tuning model
only explained part of the neuronal activity of simple-tuning neurons
(see Supplementary Fig. 2a,b for more examples).

Identification of stable states
Our previous analyses showed that the directional tuning of the neu-
ron might change when writing different fragments. On the basis of
these findings, we hypothesized that the writing of a character was
decomposed into a sequence of stable states. Motor cortical neurons
have stable directional tuning within each state, while they could have
different preferred directions in different states.

To identify the stable states, we developed an algorithm, termed
temporal functional clustering (TFC; Fig. 3a and Methods), which
grouped the movement tuning function in each time bin (50 ms in
duration) into a few clusters under a temporal continuity constraint
(see Supplementary Fig. 3a,b for verification of the algorithm). A hyper-
parameter of the model was how many states were allowed. When only
one state was allowed, the model was reduced to the classic directional
tuning model, and the model complexity increased when the number
of states increased.

We found that a small number of states was enough to significantly
better predict the neural response than the baseline tuning curve model
(P < 0.001 for any state number ≥2, one state versus two states, paired
two-tailed t-test, t(107) = 52.36, P < 0.001, Cohen’s d = 0.709; Fig. 3b). To
determine the optimal number of states, we performed threefold vali-
dation for data in each session, where each fold contained 10 distinct
Chinese characters that were written 3 times and different folds did not
have overlapping characters. The encoding loss on test set converged
(decrease of loss <10−5) when about 10 states were modelled (Fig. 3b,c),
and the result was consistent across all 18 sessions (Fig. 3d). Bayesian
information criterion also indicated that an optimal number of states

Deviated neural activation during
equivalent movements

Same neuron responding to
multiple movement directions

1.0 1.5 2.0 2.5 3.0
0

0.1

0.2

0.3

0.4

Reliability of encoding (Fisher’s discriminant value)

N
eu

ro
na

l R
2

(d
ire

ct
io

na
l t

un
in

g
m

od
el

)

Simple-tuning
neuron

Complex-tuning
neuron

n = 64
Slope = 0.14

n = 115
Slope = 0.03

Simple-tuning neurons reveal consistent
directional tuning while selectively fires

Firing rate
(normalized)

R2 = 0.003 R2 = 0.360

Example neuron
(complex-tuning)

Trial 1 Trial 2

(shǒu)
Hand

(xiě)
Write

Trial 1 Trial 2

Directions with
strong tuning

π 2π0
0

10

20

Fi
rin

g
ra

te
 (s

p
s–1

)

0

20

40

Fi
rin

g
ra

te
 (s

p
s–1

)

Writing direction
π 2π0

Writing direction

Trial 1 Trial 2 Firing rate
(normalized)

Trial 1 Trial 2
Preferred
direction

R2 = 0.060

Example neuron
(complex-tuning)

π 2π0
0

20

40

Fi
rin

g
ra

te
 (s

p
s–1

)

Writing direction

Stable directional tuning fails to explain
complex-tuning neurons

(yú)
At

(gān)
Dry

Equivalent
trajectory

Trial 1 Trial 2

Trial 1 Trial 2

Firing rate
(normalized)

[0.2, 0.4)
<0.2

[0.4, 0.6)
[0.6, 0.8)
≥0.8

1
2

3

1
2

3

1
2 3

4

1 2
3

4
5

(tā)
He

(tā)
It

1

2

3
4

5

1

2 3

5

4

[0.2, 0.4)
<0.2

[0.4, 0.6)
[0.6, 0.8)
≥0.8

[0.2, 0.4)
<0.2

[0.4, 0.6)
[0.6, 0.8)
≥0.8

Example neuron
(simple-tuning)

a

c

b

d

Fig. 2 | Evidence of state-dependent encoding during handwriting.
a, Reliability and tuning property of neurons (n = 2,850 neurons across 20
sessions). The reliability of the response to each character is characterized
using the Fisher’s discriminant value (FD) across characters (the 30 within each
session), while the tuning property is characterized using the R2 of the directional
tuning model. Neurons with reliable tuning but cannot be explained by the
directional tuning model are referred to as complex-tuning neurons (n = 115,
R2 < 0.1 and FD ≥ 1.4), and neurons conformed to the directional tuning model are
referred to as simple-tuning neurons (n = 64, R2 ≥ 0.1 and FD ≥ 1.4). b,c, Responses
of exemplary complex-tuning neurons during handwriting, including the tuning

curves (solid line, mean over 90 trials; shaded area, s.d.) and the neural firing
rate overlaid on the character trajectory. b, An exemplary neuron that shows
diverged responses to the same downward movement in two characters. c, An
exemplary neuron that responds to multiple movement directions but does not
consistently respond to any direction. d, Responses of exemplary simple-tuning
neurons during handwriting, including the tuning curves (solid line, mean over
90 trials; shaded area, s.d.) and the neural firing rate overlaid on the character
trajectory. The neuron responds to the downward direction during writing, while
it responds to some fragments but not others, although the fragments contain
similar trajectories Source data.

http://www.nature.com/nathumbehav

Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02157-x

was around 10 (Fig. 3e). Notably, the number of states used here was
much smaller than the number of Chinese characters (n = 306) and
even the types of stroke for Chinese characters (n = 32).

When 10 states were used to model neuronal firing during writing,
we found that the directional tuning models learned from one state
could well explain neural activity during that state but not other states
(Fig. 3f), and the state-dependent tuning models are mostly stable over
different character sets (Fig. 3g). In our state-identification process, we
clustered the mapping between neural activity and movement direc-
tions. Critically, we found that the state information can be also directly
decoded from the activation pattern of the neural population but
cannot be decoded from kinematic features. These results indicated
that the stable states reflect characteristics of the MC, instead of the
characteristics of movement features per se (Fig. 3h).

The state-dependent model decomposed the writing process
into a sequence of states, with each state encoding multiple fragments
that were part of a stroke (stroke fragments, with an average length of

198.4 ± 146.9 ms per fragment; Supplementary Fig. 3c). We observed
that a character was decomposed into a similar state sequence in mul-
tiple trials (Supplementary Fig. 2c). Consistent results were observed
when writing different contents, including English letters, shapes and
numbers (Supplementary Fig. 2c). We further found that the state
transfer process contained reliable patterns, that is, some states were
more likely to appear after others, and was consistent across different
character sets (Supplementary Fig. 3d,e). We further observed that the
state sequences were associated with specific strokes, regardless of
the Chinese character in which the stroke appeared (Supplementary
Fig. 3f). This suggests that the state sequence is related to the more
abstract meaning of writing, and not just to the movements of writing.

State-dependent tuning of handwriting
The state-dependent model better explained the neural responses of
individual neurons than the classic directional tuning model (paired
two-tailed t-test, t(156) = 14.66, P < 0.001, Cohen’s d = 1.265, threefold

1 2 3 1 3 4 5
State

sequence

State identification by TFC

b

c

0 20 40 60 80 100
–1 × 10–3

–5 × 10–4

0

Number of states

Lo
ss

 d
ec

re
as

e

0 20 40 60 80 100

0.010

0.015

0.020

0.025

Number of states

En
co

di
ng

 lo
ss

 M
SE Train

Test

Train
Test

Train
Test

6 8 10 12 14
0

5

10

15

Optimal number of states

C
ou

nt

µ = 9.732
n = 54

1 2 3

1

3

3

4

5

Neural
signals

Writing
velocities

a
Time

0 20 40 60 80 100
–4,000

–2,000

0

Number of states

BI
C

State identification by TFC

The handwriting process of ‘ ‘
d

e

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

0.1

0.2

0.3

0.4

Intra- and inter- state
encoding loss

Tr
ai

ni
ng

 s
ta

te

Test state

State identity is related to neural
activities rather than kinematics

f g Consistent encoding models between
di"erent character sets

h

Stable states are represented within neural signals

Velocity

Speed
Angle

Posit
ion

All k
inemati

cs

Relia
ble neurons

All n
eurons

0

0.2

0.4

0.6

St
at

e
pr

ed
ic

tio
n

ac
cu

ra
cy

Encoding models of
di"erent states

Di"erent character sets

PC 1

PC
 2

Fig. 3 | Identifying the stable states during handwriting. a, Neural activity
recorded during attempted handwriting is divided into non-overlapped stable
states, which are classified using the TFC algorithm. Each colour denotes a specific
state. b,c, The model encoding loss decreases when more states are included, and
the tipping point occurs around 10 states. A total of 18 sessions, each containing
30 characters, were included (threefold cross-validation, each fold containing 10
characters with 3 repetitions, with non-overlapped characters across folds, M ± s.d.).
Both the encoding loss (b) and the loss decrease (c) are given (n = 54, 18 sessions
each containing 3 folds). d, With a threshold of loss decrease <10−5, we found that
the mean number of states was around 10 (mean = 9.732, n = 54). e, Evaluation with
the Bayesian information criterion (BIC) also indicated an optimal model number
around 10 (the lowest mean BIC was obtained at the state number of 12 and 8 for

training and test data, respectively, n = 54, M ± s.d.). f, Pairwise neural activity
encoding loss between states. Each matrix entry (i, j) indicates the prediction error of
neural activity in state j for the model trained on state i. A model can only well predict
the neural responses during the state it is trained on. g, Visualization of encoding
models learned by TFC with three non-overlapping character sets. The first two
principal components of the linear mapping matrix were plotted. The encoding
functions were mostly similar despite different character sets. h, State prediction
performance of diverse kinematic parameters and neurons. Neural signals can
reliably predict the states while kinematic parameters cannot (threefold cross-
validation with no overlapping characters, chance level = 0.1). All box plots depict
the median (horizontal line inside the box), 25th and 75th percentiles (boxes), and
minimum and maximum values (whiskers) Source data.

http://www.nature.com/nathumbehav

Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02157-x

cross-validation with no overlapping characters across folds; Fig. 4a),
for both simple-tuning neurons (Fig. 4b) and complex-tuning neurons
(Fig. 4c). For complex-tuning neurons, the mean R2 increased from
0.03 to 0.23 (paired two-tailed t-test, t(91) = 11.02, P < 0.001, Cohen’s
d = 1.527, 95% confidence interval for the difference in mean R2 (0.17,
0.24)). The state-dependent model also better explained the neuronal
activities when writing English letters, shapes and numbers (Supple-
mentary Fig. 4). In the following, we explored why the state-dependent
model improved the modelling of simple- and complex-tuning neurons.

We first examine the directional tuning behaviour of neurons
across states. For each neuron, the state-dependent model estimated
a directional tuning curve per state, and we illustrated these tuning
curves for both simple- and complex-tuning models (Fig. 5a for normal-
ized neural responses against directions of all neurons and Fig. 5b,c for
tuning curves of representative neurons). For simple-tuning but not
complex-tuning neurons, the tuning had similar preferred directions
across different states (Fig. 5a,b). To quantify this effect, we analysed
the preferred direction of each tuning curve (PD, representing the
direction with the largest firing rates) and the standard deviation
of PD was higher for complex-tuning than simple-tuning neurons
(unpaired two-tailed Kolmogorov–Smirnov test, D(64,115) = 0.628,
P < 0.001; Fig. 5d). Next, we further analysed the modulation depth
of each tuning curve (MD, defined as the peak-to-peak value of the
directional tuning curve). It was found that the MD varied across states
even for simple neurons and the standard deviation of MD was com-
parable for complex- and simple-tuning neurons (unpaired two-tailed
Kolmogorov–Smirnov test, D(64,115) = 0.200, P = 0.063; Fig. 5e). The
state-dependent MD could explain why the state-dependent model
outperformed the state-independent model even for simple-tuning
neurons.

Handwriting decoding based on stable states
The previous analyses demonstrated how individual neurons encode
the handwriting process, and in the following, we utilized the popu-
lation response to decode the handwriting trajectory. We built a
state-dependent neural decoder to decode the movement velocity
vector (direction with speed) and recovered the trajectory of each
stroke based on velocity (Fig. 6a). To enable state-dependent decoding,
we extended the velocity Kalman filter with a dynamic observation func-
tion (the linear mapping from kinematics to neural signals)14. Specifi-
cally, instead of using a static observation function, the state-dependent

decoder contained a pool of observation models (which are the linear
directional tuning models learned by TFC), and adaptively weighed
and assembled the models based on the Bayesian inference of states,
given the incoming neural signals.

The state inferred by the state-dependent neural decoder was gen-
erally consistent with the state inferred by the neural encoding model
(Supplementary Fig. 5a,b). Compared with a state-independent neural
decoder (velocity Kalman filter9), the state-dependent decoder could
decode handwriting with lower root mean squared error (RMSE; 13–18%
decrease, paired two-tailed t-test, t(17) = 31.20, P < 0.001, Cohen’s
d = 2.199; Fig. 6b,c) and higher R2 (>69% increase, paired two-tailed
t-test, t(17) = 31.37, P < 0.001, Cohen’s d = 2.495, Fig. 6b,d, threefold
cross-validation with no overlapping characters across folds). Con-
sistent results were obtained with both single-unit neural activity
(SUA, offline sorted) and multi-unit neural activity (MUA, unsorted;
Supplementary Fig. 5c). Significant improvement was also achieved
when writing different contents, including English letters, shapes and
numbers (Supplementary Fig. 6). Overall, these results confirmed that
the state-dependent approach enhanced the decoding of stroke frag-
ment trajectories during handwriting.

The decoding process could be achieved online, allowing the
participant to use a robotic arm to write recognizable Chinese charac-
ters through attempted writing (Supplementary Video 2; the strokes
were decoded by the state-dependent decoder, while the end of the
strokes and the beginning of the next strokes were predefined to
reconstruct the character from the strokes). We further evaluated
the long-term reliability of handwriting decoding and found that the
same state-dependent decoder could perform stably for a month
(Supplementary Fig. 5d). Furthermore, its performance generalized to
new characters (Supplementary Fig. 5d). Taken together, these results
demonstrated that complex handwriting is decomposed into smaller
units that are encoded in different neural states in the MC, and only
within each state is movement encoded in a roughly linear manner.

Discussion
Handwriting is a highly sophisticated skilled behaviour that is special
to the human being, and the inherent complexity of the Chinese writ-
ing task provides a unique window to dissect the underlying neural
mechanisms for sophisticated fine movements. Through the task,
we found that the human MC encodes a sophisticated writing pro-
cess with a sequence of stable states, involving two types of neuron:

State-
dependent

Random
states

State-
independent

0

0.2

0.4

0.6

0.8

1.0

R2
P < 0.001

State-
dependent

Random
states

State-
independent

0

0.2

0.4

0.6

0.8

1.0

R2

P < 0.001

State-
dependent

Random
states

State-
independent

0

0.2

0.4

0.6

0.8

R2

P < 0.001

P < 0.001

State-dependent encoding model better explains neuronal activity

All reliably tuned neurons Simple-tuning neurons Complex-tuning neuronsa b c

P < 0.001 P < 0.001

Fig. 4 | State-dependent encoding model better predicts neuronal activities.
a–c, R2 of the model that explains neural activity using state-dependent
directional tuning (with neurons across 20 sessions, M ± s.d.). The state-
dependent directional tuning model significantly enhances the R2 for neurons
(n = 157) with reliably tuning to characters, and the mean R2 increased from
0.0873 to 0.2873 (state-dependent versus random states, paired two-tailed t-test,
t(156) = 13.94, P = 3.37 × 10−29, Cohen’s d = 1.092; state-dependent versus state-
independent, paired two-tailed t-test, t(156) = 14.66, P = 3.897 × 10−31, Cohen’s
d = 1.265) (a). For simple-tuning neurons (n = 65), the mean R2 increased from

0.1748 to 0.3715 (state-dependent versus random states, paired two-tailed t-test,
t(64) = 8.799, P = 1.271 × 10−12, Cohen’s d = 1.086; state-dependent versus state-
independent, paired two-tailed t-test, t(64) = 9.622, P = 4.716 × 10−14, Cohen’s
d = 1.291) (b). For complex-tuning neurons (n = 92), the mean R2 increased from
0.0254 to 0.2279 (state-dependent versus random states, paired two-tailed
t-test, t(91) = 10.77, P = 6.226 × 10−18, Cohen’s d = 1.353; state-dependent versus
state-independent, paired two-tailed t-test, t(91) = 11.02, P = 1.904 × 10−18, Cohen’s
d = 1.527) (c) Source data.

http://www.nature.com/nathumbehav

Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02157-x

(1) simple-tuning neurons that have stable directional tuning and (2)
complex-tuning neurons that have variable directional tuning across
states.

These results support a hierarchical control scheme of sophis-
ticated movements (Supplementary Fig. 7): hypothetically, a highly
complex movement trajectory is first decomposed into small and
simple fragments, and each trajectory fragment is further converted
into a sequence of movement velocities under a specific state of the MC.
Furthermore, in this process, it is possible that (1) the complex-tuning
neurons are upstream motor neurons related to the encoding of trajec-
tory fragments, and (2) the simple-tuning neurons are downstream
motor neurons related to the encoding of movement velocity. In other
words, the complex-tuning neurons decompose a trajectory fragment
into momentary velocity, and the movement velocity is implemented
by the simple-tuning neurons. This two-step movement control per-
spective is in sharp contrast with the traditional perspective that the
MC only carries out simple motor commands7,16,17.

Hierarchically decomposing a complex sequence into smaller
units is a common strategy in the brain5 and its neural underpinnings
have been studied across multiple domains such as motor planning3,
decision-making18, working memory19, song sequencing20 and lan-
guage processing21. Revealing the primitive units to decompose a
sequence, however, turns out to be highly challenging, especially
for a language-related process6,22. On the basis of the writing behav-
iour, where the movements are associated with abstract meanings,
characters and strokes are apparent candidates for the primitive
unit for writing. Nevertheless, Chinese has a large number of char-
acters (>3,500 frequent characters), and assigning a specific neural
population for the writing of each character, that is, one-hot coding, is
implausible. The number of stroke types is limited (n = 32). Neverthe-
less, strokes can be sophisticated, such as ‘ ’ and ‘ ’, and redundant,
that is, sharing common elements such as vertical or horizontal move-
ments. Furthermore, even the writing of a simple stroke such as ‘一’
can be meaningfully divided into a start, a body and an end, which

Simple
neuron

Complex
neuron

s.
d.

 o
f P

D
(n

or
m

al
iz

ed
)

d

Fi
rin

g
ra

te
 (s

p
s–1

)

Tuning curve of
each state

Tuning curve of
each state

Tuning curve
ignoring states

Tuning curve
ignoring states

Example neuron 1 Example neuron 2

Fi
rin

g
ra

te
 (s

p
s–1

)

Simple
neuron

Complex
neuron

a

0

0.5

1.0

State-dependent tuning to movement direction

s.
d.

 o
f M

D
(n

or
m

al
iz

ed
)

e

b

Si
m

pl
e

ne
ur

on

c

C
om

pl
ex

ne
ur

on

Fi
rin

g
ra

te
 (s

p
s–1

)

State-independent
R2 = 0.022

State-dependent
R2 = 0.50

State-independent
R2 = 0.003

State-dependent
R2 = 0.33

Tuning curve of
each state

Tuning curve of
each state

Tuning curve
ignoring states

Tuning curve
ignoring states

Example neuron 1 Example neuron 2

Simple
neuron

Complex
neuron

Fi
rin

g
ra

te
 (s

p
s–1

)

0

0.5

1.0

State-independent
R2 = 0.39

State-dependent
R2 = 0.61

State-independent
R2 = 0.34

State-dependent
R2 = 0.65

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 State 10

N
eu

ro
ns

N
eu

ro
ns

0 2π

Direction

0

0.5

1

P < 0.001

P = 0.063

20

10

0

40

20

0

40

30

20

40

20

0

40

20

0

40

20

0

15

10

5
0 0 0 02π 2π 2π 2ππ π π π

0 0 0 02π 2π 2π 2ππ π π π

8

7

6

Fig. 5 | State-dependent directional tuning of MC neurons. a, Normalized firing
rates over directions with both simple- and complex-tuning neurons, sorted
based on state 1. The simple-tuning neurons show more consistent directional
tuning over states compared with the complex-tuning neurons. b, Directional
tuning curve of two exemplar simple-tuning neurons estimated using a state-
independent model (black) or a state-dependent model (magenta). For the
state-dependent model, a tuning curve is estimated based on each state and
the tuning curves have a consistent preferred direction (PD) across states but

the modulation depth (MD) varies across states. Darker colour for curves with
higher R2. c, Similar to b, but for complex-tuning neurons that exhibit variable
directional tuning under different states. d,e, Statistical analysis of PD (d) and
MD (e) for simple- and complex-tuning neurons. The standard deviation of PD
is significantly higher for complex-tuning neurons (mean = 0.57, n = 115) than
simple-tuning neurons (mean = 0.30, n = 64) (unpaired two-tailed Kolmogorov–
Smirnov test, D(64,115) = 0.628, P = 1.97 × 10−20 (d); unpaired two-tailed
Kolmogorov–Smirnov test, D(64,115) = 0.200, P = 0.063 (e)) Source data.

http://www.nature.com/nathumbehav

Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02157-x

are especially emphasized in Chinese calligraphy and correspond to
the decomposition of a movement into acceleration and decelera-
tion phases23. Here we demonstrate that, in the MC, the writing of a
character is decomposed into a sequence of states that correspond
to fragments of a stroke. We also found that the state sequence was
related to the strokes being written, which is the abstract meaning of
writing rather than the movement parameters. This suggested that
cognitive information was involved during handwriting encoding:
state signals may originate from cognitive processes, while the MC
receives the signals and performs state-dependent tuning during
handwriting control.

Previous studies have demonstrated that neurons in the MC are
tuned to movement features7,8,11,24–26 but static tuning to movement fea-
tures has limited ability to explain the variance of neuronal activity13,23,27,
especially during natural movements28. Instead, neural tuning to move-
ment features can actively adapt to a specific task or environmental
setting29,30. In other words, depending on the external environment
or instruction, the MC neurons can encode movements through dif-
ferent neural encoding subspaces31–33. The current study, however,
demonstrates intrinsic alternation between MC neural encoding sub-
space, depending on internally generated states during sophisticated
movements. Similar ideas have also been proposed based on relatively

simple movements, for example, decomposing a reaching movement
into an acceleration phase and a deceleration phase13,23,34,35, stereotyped
movement fragments12, but here we demonstrated many diverse states,
which can encode various movement fragments using under a linear
directional tuning model, and suggested a hierarchical model for the
neural control of sophisticated movements. We further found that state
transition occurred at the neural population level, supporting recent
findings on population-level dynamics in MC36,37.

A limitation of this study is that the results shown are from only
one participant, and an important next step is to validate the results
with more individuals. Second, in the experimental paradigm, the
participant not only performed attempted handwriting but was simul-
taneously observing the virtual handwriting of the character. Thus,
the neural signals could also contain the modulation of the observa-
tion process38,39. Third, the proof-of-concept demonstration is still an
open-loop control as the participant was watching the virtual hand in
the video instead of the robotic arm writing the strokes (Supplementary
Video 2). Further advances in decoders and systems are required to
enable high-performance handwriting BCIs in a closed-loop manner.
In addition, previous studies also identified primitive units in move-
ments based on kinematic parameters40–43 or muscle activities44–48,
indicating a hierarchical movement segmentation at different levels.

State-dependent handwriting decoding with a state inference process

(1) Model pool
(learned by TFC)

Neural signals

State-dependent
neural decoding

(2) State
inference
(larger circles
indicate larger

likelihoods)

Time

Predicted
movement

(3) Dynamically assembled state-dependent decoder (DyEnsemble)

State sequence 4 4 4 4 4 5 5 5433

State-dependent
neural decoder

… …
Time

Adapted to
state switch

…

3 4 5

Attempted
movement

State prediction

Target
characters

Decoding of handwriting with state-dependent/state-independent models

(jiē) (kǒu)(năo)
Brain

(jī)
Computer

State-independent

decoder

State-dependent

decoder

Interface

State-
independent

State-
dependent

8

13

18

RM
SE

ha
nd

w
rit

in
g

re
co

ns
tr

uc
tio

n

State-
independent

State-
dependent

0

0.3

0.6

R2

ha
nd

w
rit

in
g

re
co

ns
tr

uc
tio

n

a

b c d
P < 0.001 P < 0.001

Fig. 6 | State-dependent decoding model improves the performance of
handwriting trajectory prediction. a, Diagrammatic representation of
the state-dependent decoding process during handwriting (DyEnsemble).
Utilizing encoding models for each state established through TFC, DyEnsemble
dynamically infers the state and adaptively assembles a state-specific decoder in
real time based on the incoming neural signals. This approach allows for adaptive
switching between decoding models along with state switches. b, The writing
trajectory was decoded using state-dependent and state-independent neural

decoders. c,d, Performance of handwriting decoding using RMSE and R2 between
the ground truth trajectory and the decoded trajectory (offline evaluation with
threefold cross-validation with no overlapping characters across folds in each
session, n = 18; paired two-tailed t-test, t(17) = 31.20, P = 1.896 × 10−16, Cohen’s
d = 2.199 (c); paired two-tailed t-test, t(17) = 31.37, P = 1.734 × 10−16, Cohen’s
d = 2.495 (d)). All box plots depict the median (horizontal line inside the box),
25th and 75th percentiles (boxes), and minimum and maximum values (whiskers)
Source data.

http://www.nature.com/nathumbehav

Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02157-x

The relationship between segmentations with different signals can be
valuable for future work.

In summary, our results strongly demonstrate that sophisticated
fine movements such as handwriting are encoded in the human MC as a
sequence of stable states, each encoding a fragment of the movement,
and the state-dependent encoding mechanism can shed light on future
design of brain-computer interfaces for sophisticated fine movements.

Methods
Experimental model and subject details
Participant and ethics. All clinical and experimental procedures con-
ducted in this study received approval from the Medical Ethics Com-
mittee of The Second Affiliated Hospital of Zhejiang University (ethical
review number 2019-158, approved on 22 May 2019) and were regis-
tered in the Chinese Clinical Trial Registry (ref. ChiCTR2100050705).
Informed consent was obtained verbally from the participant, along
with the consent of his family members, and was duly signed by his
legal representative. This study used an observational design and no
intervention took place that was not driven by clinical need.

The volunteer participant is a right-handed man, 75 years old at the
time of data collection. He was involved in a car accident and suffered
from complete tetraplegia subsequent to a traumatic cervical spine
injury at the C4 level, which occurred approximately 2 years before
study enrolment. The volunteer participant demonstrated the ability
to move body parts above the neck and exhibited normal linguistic
competence and comprehension for all tasks. He scored 0/5 on skeletal
muscle strength for limb motor behaviour.

On 27 August 2019, two 96-channel intracortical microelec-
trode arrays (4 mm × 4 mm Utah array with 1.5 mm length, Blackrock
Microsystems) were implanted in the left MC, with one array located in
the middle of the hand knob area (array A) and the other array located
medially approximately 1 cm apart (array B), guided by structural (CT)
and functional imaging (fMRI)49. The participant was asked to perform
imagery movement of hand grasping and elbow flexion/extension
with fMRI scanning to confirm the activation area of the MC49. Data
presented in this study cover the period from post-implant days 1,374
to 1,792.

Method details
Neural signal recording and processing. Neural signals were
recorded from the microelectrode arrays using the Neuroport system
(NSP, Blackrock Microsystems). The signals were amplified, digitized
and recorded at a sampling rate of 30 kHz. To reduce common mode
noise, a common average reference filter was applied, subtracting the
average signal across the array from each electrode. A digital high-pass
filter with a cut-off frequency of 250 Hz was then applied to each elec-
trode. Then, threshold crossing detection was performed using the
Central software suite (Blackrock Microsystems). The threshold was
set based on the root mean square (RMS) of the voltage time series
recorded on each electrode. Specifically, thresholds ranging from
−6.25 × RMS to −5.5 × RMS were used.

To analyse the neuronal activity, neurons were manually sorted
with either Plexon Offline Spike Sorter v4 (offline analysis) or Central
software (online decoding). After spike sorting, neuronal spikes were
binned into 50 ms bins, without overlapping (each stroke contains
12 ± 6 bins, and each character contains 126 ± 24 bins). For the decoding
tasks, the spike data were smoothed using an average filter of 5 bins.

The delay between the start of data extraction and the go cue was
determined by evaluating a set of delay values ranging from −1,000 ms
to 1,000 ms. The delay value of 300 ms was selected according to the
overall decoding performance with a linear model.

Experimental paradigm. The participant performed an attempted
handwriting task while observing a virtual handwriting of the charac-
ter. During the experimental sessions, the participant attempted the

handwriting of characters guided by instructional videos (Fig. 1 and
Supplementary Video 1). The instructional video presented a virtual
hand writing a target character stroke by stroke; at the same time,
the participant attempted writing the character as if the virtual hand
belonged to him.

For the Chinese character writing task, there were two paradigms.

1. Single-character writing with visual guidance (CW): a single
Chinese character in dark green colour was displayed on the
screen above a red square during the delay period, which lasted
between 1 s and 3 s. After the delay period, the red square cue
turned green and played a sound ‘ding’ to signal the participant
to start writing. Simultaneously, a virtual hand holding chalk
appeared on the screen and wrote the character stroke by
stroke, highlighting the written part in bright green. The dura-
tion of the writing period varied depending on the complexity
of the Chinese character, with more strokes requiring a longer
writing time. After completing one character, the screen turned
black and lasted for 1.5 s (Supplementary Video 1).

2. Sentence writing with visual guidance (SW): initially, the char-
acters of a sentence were displayed in dark green on the screen
above a red square. Following a delay period, the red square
turned green, indicating the start of the sentence. The experi-
mental procedure for each character within the sentence was
identical to the visual guidance paradigm, with a short horizontal
line appearing below the character as a reminder for the partici-
pant to begin writing a character (Supplementary Video 2).

The instructional video presents the writing process in a
stroke-by-stroke manner. To facilitate smooth tracking, the velocity
of the virtual hand was programmed to maintain a constant accelera-
tion, ensuring ease of following for the participant.

The ‘single-character writing with visual guidance’ paradigm was
used for data collection and offline analysis. The ‘sentence writing with
visual guidance’ was mostly for online evaluation and demonstration.
The main results were analysed offline, and the signal processing and
analysis systems were developed by MATLAB and Python. For the online
evaluation, the neural signal processing programme was developed
in MATLAB, and the graphical user interface of the experimental task
was developed in Python (see Supplementary Text for online settings).

TFC algorithm. The TFC algorithm is a computational approach
designed to identify stable state and state switches during writing.
The underlying assumption of TFC is that the neuronal encoding model,
at the population level, may shift under different states while keeping
stable within the same state. Under this assumption, TFC can automati-
cally compute the neural mapping model for each state and detect state
switches in a data-driven way.

Given a paired dataset
{X,Y } ≡ {x

1

,… , x

T

, y

1

,… , y

T

}

, where X ∈ ℝ

d

x

×T
represents the writing kinematic data, and Y ∈ ℝ

d

y

×T represents the
preprocessed neural data, with dx and dy denoting the respective dimen-
sions, and T representing the length of time bins. Our objective is to
learn M encoding models of ℋ

m

(•) ∈ {ℋ

1

(•) ,ℋ

2

(•) ,… ,ℋ

M

(•)} , where
each model represents an encoding in a single state. In this study, each
encoding model is a linear mapping from the velocity vector to the
neural signals, that is, the velocity-based directional tuning model.

To obtain the M encoding models, TFC first randomly selected
a set of encoding models and then applied the models to each data
pair. The data would be assigned to the encoding model with minimal
errors, and the models would update with the data assigned to them.
The process repeated until the errors were minimized.

Specifically, the TFC algorithm uses an Expectation-Maximum
(EM) process. Initially, we randomly set the parameters of M encoding
models. Then we perform the Expectation-step (E-step), where each
pair of {X,Y} is assigned to a specific encoding model where the data
has the lowest encoding loss. Especially, the encoding loss is smoothed

http://www.nature.com/nathumbehav

Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02157-x

temporally to encourage that the adjacent data pair should belong
to the same state (temporal constraint). After that, we perform the
Maximum-step (M-step), where each model updates its parameters
with the data pairs assigned to it. The TFC algorithm repeats the E-step
and M-step iteratively until convergence.

1. Initialization step
To obtain M initial models, we randomly set the parameters of
each model ℋ

m

(•). Each model is an encoding function that
maps kinematics to neural signal estimation ̂

Y :

̂

Y = ℋ

m

(X) . (1)

2. E-step: data assignment
The E-step aims to reassign data pairs to their !ttest models.
For each data pair {X,Y }, we can compute the predicted neural
signal ̂

Y

m

 given kinematics X and encoding model ℋ
m

(⋅):

̂

Y

m

= ℋ

m

(X) (2)

where ̂Y
m

∈ ℝ

d

y

×T denotes the neural signals predicted by the encoding
model ℋ

m

(⋅) for all the kinematics X . Given a set of M encoding models,
we can obtain M predictions for each data pair. Then we calculate the
encoding loss at each time step for each encoding model:

E

m

= ∑

√

||Y −

̂

Y

m

||

2

(3)

where E
m

∈ ℝ

1×T is the encoding error between the neural signal ̂

Y

m

estimated by model ℋ

m

(⋅), and the ground truth Y , summed over all
the neurons.Next, we smooth the error vector E

m

 temporally to encour-
age data pairs that are adjacent in time to be assigned to the same
model. With this constraint, we can obtain more temporally continuous
state segmentation. The window size for a moving averaging smooth
was typically set with 3 to 10 bins, denoted as l

smooth

. The smoothed
encoding loss for model ℋ

m

(⋅) is given by

E

m

= smooth (E

m

, l

smooth

) . (4)

Practically, the parameter of l

smooth

 could affect the length of states,
and a larger l

smooth

 usually leads to bigger lengths for states. Here we
statistically analysed the length of states with different settings of
l

smooth

. As shown in Supplementary Fig. 3c, the mean length of states
was mostly around 200  ms across different settings.
Once we have the smoothed encoding loss for each model, we assign
each data pair to the model that gives the minimal encoding loss:

E = [E

1

; E

2

;… ; E

m

;… ; E

M

] , (5)

m

assign

= argmin

m

(E) (6)

where E ∈ ℝ

M×T represents each model’s encoding loss and m
assign

∈ ℝ

1×T
denotes the model index selected.

3. M-step: parameter updating
After the E-step, each data pair has been assigned to a speci!c
model, and each model ℋ

m

(⋅) has a collection of data pairs
{X

ℋ

m

,Y

ℋ

m

}. Then we can update the parameters for the models,
by !tting the following function:

Y

ℋ

m

= ℋ

m

(X

ℋ

m

) + ϵ

ℋ

m

(7)

with ϵ
ℋ

m

 being the zero-Gaussian noise term. In this study, we use a
linear function, such that ℋ

m

(⋅) would include a linear mapping matrix
and a Gaussian noise.

4. Repeat E-step and M-step until convergence

By iteratively performing the E-step and M-step, the overall encod-
ing error will decrease continuously. Suppose at the ith iteration we

have an error of ei. One pre-set early-stopping threshold β (typically
set to 0.001) can be used to decide when to stop the iteration:

e

i

< βe

i−1

. (8)

When the iteration stops, the TFC algorithm will return the param-
eters for each model (that is, the directional tuning model) as well as
the temporal segments corresponding to each model. The temporal
segments indicate the segmentation of states.

Existing approaches, such as the hidden Markov model (HMM), can
also segment movements into states23. However, the HMM model only
inputs neural signals, such that the temporal bins with similar neural
signal patterns will be regarded as the same state. Meanwhile, TFC
defines neural states as stable directional tuning between neural activi-
ties and movements, where temporal bins with similar tuning functions
are regarded as the same state, and thus facilitate the state-dependent
directional tuning model.

State-dependent neural decoder. A state-dependent neural decoder
was proposed to allow dynamic switching of decoding models adap-
tively with changes in states (Fig. 6a). The state-space model of the
Kalman filter includes two parts: a system function (mapping from
previous kinematics to current kinematics) and an observation
function (mapping from kinematics to neural signals). To enable
state-dependent decoding, we extended the Kalman filter with a
dynamic observation function, in a dynamic ensemble framework
(DyEnsemble)14. The DyEnsemble uses the encoding models coming
from the TFC algorithm as a pool of observation models and adaptively
weighs and assembles the models based on the Bayesian rule, given
the incoming neural signals. In this way, the DyEnsemble enables
state-specific decoding that adapts to the change of states14,50.

The DyEnsemble decoder defines the state-space model as follows:

x

k

= f (x

k−1

) + ς

k−1

, (9)

y

k

= h

k

(x

k

) + ε

υ

k

. (10)

The model contains a system equation (equation (9)) that trans-
mits the value of interest x

k−1

 at time k − 1 to the next time step k using
function f(•), with ς

k

∼ N(0,σ

2

ς

), a zero-mean Gaussian, being the transi-
tion noise. It also contains an observation equation (equation (10)),
which uses x

k

, to infer the measurement variable y
k

 using function
h

k

(•), with a zero-mean Gaussian observation noise ε
υ

k

. Notably, the
observation function h

k

(•) is dependent on time, such that it dynami-
cally changes over time. The DyEnsemble algorithm aims to estimate
the dynamic measurement function (h

k

(•)), and the corresponding x
k

over time, given the incoming neural signals (y

k

).
In the scenario of neural decoding, x

k

∈ ℝ

d

x is the movement kin-
ematics, and y

k

∈ ℝ

d

y denotes the neural signals, with d
x

 and d
y

 denoting
the respective dimensions. The observation function h

k

(•) is an encod-
ing function mapping from kinematics (x

k

) to neural signals (y
k

).
DyEnsemble model maintains a pool of encoding models as
{ℋ

1

(•),ℋ

2

(•),… ,ℋ

M

(•)}. Given incoming neural signals y
k

, DyEnsemble
weighs the models in the pool by the Bayesian likelihood to y

k

 and
assembles h

k

(•) in a Bayesian averaging rule. Here we have obtained
the model pool with the TFC algorithm, with each model representing
a specific state. Therefore, the DyEnsemble model can facilitate
state-specific decoding by first inferring the state identity and then
adaptively switching to the proper model.

Note that, if we consider a one-state condition, where the observa-
tion equation (equation (10)) uses a constant model instead of a
state-dependent h

k

(•), the equations can be solved with the Kalman
filters for an optimal solution. Therefore, we used the Kalman filter as
the state-independent decoder for comparison.

Specifically, considering a time series of neural signals y
0∶k

,
the decoding problem involves estimating the kinematic state x

k

 at
time step k. The posterior distribution of the state can be specified by

http://www.nature.com/nathumbehav

Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02157-x

p (x

k

, |, y

0∶k

) =

M

Σ

m=1

p (x

k

, |,h

k

(⋅) = ℋ

m

(•) , y

0∶k

)p (h

k

(⋅) = ℋ

m

(•) , |, y

0∶k

) .

(11)

Here p (x
k

, |,h

k

(⋅) = ℋ

m

(•), y

0∶k

)

 represents the kinematic state posterior
estimated by the model ℋ

m

(•) at time k , and p (h
k

(⋅) = ℋ

m

(•), |, y

0∶k

)

denotes the posterior probability of selecting the encoding model
ℋ

m

(•) at time k, which can be computed as follows:

p (h

k

(⋅) = ℋ

m

(•) , |, y

0∶k

) =

p (h

k

(⋅) = ℋ

m

(•) , |, y

0∶k−1

)p

m

(y

k

, |, y

0∶k−1

)

Σ

M

j=1

p (h

k

(⋅) = ℋ

j

(•) , |, y

0∶k−1

)p

j

(y

k

|

y

0∶k−1

)

(12)

where p (h
k

(⋅) = ℋ

m

(•), |, y

0∶k−1

)

 represents the prior probability of choos-
ing model ℋ

m

(•) at time k, while p
m

(y

k

|

y

0∶k−1

) is the marginal likelihood
of choosing model ℋ

m

(•) at time k. The marginal likelihood represents
the confidence or reliability of a particular model’s prediction.

The prior probability at time k can be recursively expressed as the
posterior probability at time k − 1, with a sticking factor α:

p (h

k

(⋅) = ℋ

m

(•)

|

y

0∶k−1

) =

[p (h

k−1

(⋅) = ℋ

m

(•) , |, y

0∶k−1

)]

α

∑

M

j=1

[p (h

k−1

(⋅) = ℋ

j

(•) , |, y

0∶k−1

)]

2

(13)

where p (h
k−1

(⋅) = ℋ

m

(•), |, y

0∶k−1

)

 is the posterior probability of choosing
encoding model ℋ

m

(•) at time k − 1. The parameter α ∈ (0, 1) represents
the sticking factor, where a higher value leads to smoother changes in
the model weights.

And the marginal likelihood can be computed as follows:

p

m

(y

k

, |, y

0∶k−1

) =

∫p

m

(y

k

, |, x

k

)p (x

k

, |, y

0∶k−1

)dx

k

(14)

where p
m

(y

k

, |, x

k

) is the likelihood of model ℋ
m

(•) for a specific kine-
matic state x

k

. The DyEnsemble model can be solved using a particle
filtering algorithm (see Supplementary Text for details).

Statistical analysis
In Fig. 3b, we applied the paired t-test (two-tailed), the P < 4.417 × 10−78 for
any state number ≥2. In Fig. 4a–c, we applied the paired t-test (two-tailed),
with n = 157, n = 65 and n = 92. The P values are 3.37 × 10−29/3.897 × 10−31
(state-dependent versus random states/state-dependent versus
state-independent), 1.271 × 10−12/4.716 × 10−14 and 6.226 × 10−18/1.904 × 10−18,
respectively. In Fig. 5d,e, we applied the Kolmogorov–Smirnov test
(two-tailed). For Fig. 5d, n = 64 and 115, with P = 1.97 × 10−20. For Fig. 5e,
n = 64 and 115, with P = 0.06299. In Fig. 6c,d, we applied the paired t-test
(two-tailed), with n = 18 sessions. The P values are 1.896 × 10−16 and
1.734 × 10−16 for the RMSE and R2, respectively. In Supplementary Fig. 3e,
we applied a paired t-test (two-tailed) with n = 18 sessions. The P value
is 1.373 × 10−12. In Supplementary Fig. 4, we applied the paired t-test
(two-tailed) with n = 157 reliable neurons. The P values for English let-
ters, shapes and numbers are 2.098 × 10−7/1.642 × 10−8 (state-dependent
versus random states/state-dependent versus state-independent),
2.556 × 10−5/1.133 × 10−6 and 5.77 × 10−7/5.865 × 10−9, respectively. In Supple-
mentary Fig. 5c, we applied a paired t-test, with n = 18 sessions. The P values
are 3.49 × 10−4 and 6.507 × 10−8 for state-independent and state-dependent.
In Supplementary Fig. 6b, we applied a paired t-test (two-tailed). The
P values are 3.385 × 10−14, 3.229 × 10−12, 1.567 × 10−12 and 6.614 × 10−10 for
the characters, English letters, shapes and numbers, respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data relevant to this study are accessible under restricted access
according to our clinical trial protocol. Access can be granted upon

request to the corresponding author. The response can be expected
within 3 weeks. Any data provided must be kept confidential and must
not be shared with others without approval. Source data are provided
with this paper.

Code availability
The code used for analyses in this paper is available via Zenodo at
https://zenodo.org/records/14865736 (ref. 51).

References
1. Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of

arm movements: a dynamical systems perspective. Annu. Rev.
Neurosci. 36, 337–359 (2013).

2. Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. &
Shenoy, K. V. High-performance brain-to-text communication via
handwriting. Nature 593, 249–254 (2021).

3. Geddes, C. E., Li, H. & Jin, X. Optogenetic editing reveals the
hierarchical organization of learned action sequences. Cell 174,
32–43 (2018).

4. Gallistel, C. R. The Organization of Action: A New Synthesis
(Psychology Press, 2013).

5. Lashley, K. S. et al. The Problem of Serial Order in Behavior Vol. 21
(Bobbs-Merrill Oxford, 1951).

6. Khanna, A. R. et al. Single-neuronal elements of speech
production in humans. Nature https://doi.org/10.1038/s41586-
023-06982-w (2024).

7. Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. Neuronal
population coding of movement direction. Science 233,
1416–1419 (1986).

8. Hochberg, L. R. et al. Reach and grasp by people with tetraplegia
using a neurally controlled robotic arm. Nature 485, 372–375
(2012).

9. Collinger, J. L. et al. High-performance neuroprosthetic control by
an individual with tetraplegia. Lancet 381, 557–564 (2013).

10. Pandarinath, C. et al. High-performance communication by
people with paralysis using an intracortical brain-computer
interface. eLife 6, e18554 (2017).

11. Inoue, Y., Mao, H., Suway, S. B., Orellana, J. & Schwartz, A. B.
Decoding arm speed during reaching. Nat. Commun. 9,
5243 (2018).

12. Hatsopoulos, N. G., Xu, Q. & Amit, Y. Encoding of movement
fragments in the motor cortex. J. Neurosci. 27, 5105–5114 (2007).

13. Suway, S. et al. Temporally segmented directionality in the motor
cortex. Cereb. Cortex 28, 2326–2339 (2018).

14. Qi, Y. et al. Dynamic ensemble Bayesian filter for robust control
of a human brain-machine interface. IEEE Trans. Biomed. Eng. 69,
3825–3835 (2022).

15. Gilja, V. et al. A high-performance neural prosthesis enabled by
control algorithm design. Nat. Neurosci. 15, 1752–1757 (2012).

16. Truccolo, W., Friehs, G. M., Donoghue, J. P. & Hochberg, L. R.
Primary motor cortex tuning to intended movement kinematics in
humans with tetraplegia. J. Neurosci. 28, 1163–1178 (2008).

17. Moran, D. W. & Schwartz, A. B. Motor cortical representation
of speed and direction during reaching. J. Neurophysiol. 82,
2676–2692 (1999).

18. Koay, S. A., Charles, A. S., Thiberge, S. Y., Brody, C. D. & Tank, D.
W. Sequential and e#icient neural-population coding of complex
task information. Neuron 110, 328–349 (2022).

19. Xie, Y. et al. Geometry of sequence working memory in macaque
prefrontal cortex. Science 375, 632–639 (2022).

20. Roemschied, F. A. et al. Flexible circuit mechanisms for
context-dependent song sequencing. Nature 622, 794–801 (2023).

21. Ding, N., Melloni, L., Zhang, H., Tian, X. & Poeppel, D. Cortical
tracking of hierarchical linguistic structures in connected speech.
Nat. Neurosci. 19, 158–164 (2016).

http://www.nature.com/nathumbehav
https://zenodo.org/records/14865736
https://doi.org/10.1038/s41586-023-06982-w
https://doi.org/10.1038/s41586-023-06982-w

Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02157-x

22. Poeppel, D., & Embick, D. Defining the relation between lnguistics
and neuroscience. In Twenty-first Century Psycholinguistics: Four
Cornerstones (ed Cutler, A.) 103–118 (Routledge, 2005).

23. Kadmon Harpaz, N., Ungarish, D., Hatsopoulos, N. G. & Flash, T.
Movement decomposition in the primary motor cortex. Cereb.
Cortex 29, 1619–1633 (2019).

24. Georgopoulos, A. P., Ashe, J., Smyrnis, N. & Taira, M. The motor
cortex and the coding of force. Science 256, 1692–1695 (1992).

25. Kakei, S., Ho$man, D. S. & Strick, P. L. Muscle and movement
representations in the primary motor cortex. Science 285,
2136–2139 (1999).

26. Gri#in, D. M., Ho$man, D. S. & Strick, P. L. Corticomotoneuronal
cells are ‘functionally tuned’. Science 350, 667–670 (2015).

27. Schwartz, A. B. & Moran, D. W. Arm trajectory and representation
of movement processing in motor cortical activity. Eur. J.
Neurosci. 12, 1851–1856 (2000).

28. Aflalo, T. N. & Graziano, M. S. Partial tuning of motor cortex
neurons to final posture in a free-moving paradigm. Proc. Natl
Acad. Sci. USA 103, 2909–2914 (2006).

29. Omlor, W. et al. Context-dependent limb movement encoding
in neuronal populations of motor cortex. Nat. Commun. 10, 4812
(2019).

30. Terada, S.-I., Kobayashi, K. & Matsuzaki, M. Transition of distinct
context-dependent ensembles from secondary to primary motor
cortex in skilled motor performance. Cell Rep. 41, 111494 (2022).

31. Xing, D., Truccolo, W. & Borton, D. A. Emergence of distinct neural
subspaces in motor cortical dynamics during volitional adjustments
of ongoing locomotion. J. Neurosci. 42, 9142–9157 (2022).

32. Rouse, A. G. & Schieber, M. H. Condition-dependent neural
dimensions progressively shift during reach to grasp. Cell Rep.
25, 3158–3168 (2018).

33. Suresh, A. K. et al. Neural population dynamics in motor cortex
are di$erent for reach and grasp. eLife 9, e58848 (2020).

34. Krebs, H. I., Aisen, M. L., Volpe, B. T. & Hogan, N. Quantization of
continuous arm movements in humans with brain injury. Proc.
Natl Acad. Sci. USA 96, 4645–4649 (1999).

35. Sergio, L. E., Hamel-Pâquet, C. & Kalaska, J. F. Motor cortex
neural correlates of output kinematics and kinetics during
isometric-force and arm-reaching tasks. J. Neurophysiol. 94,
2353–2378 (2005).

36. Pandarinath, C. et al. Inferring single-trial neural population
dynamics using sequential auto-encoders. Nat. Methods 15,
805–815 (2018).

37. Shenoy, K. V. & Kao, J. C. Measurement, manipulation and
modeling of brain-wide neural population dynamics. Nat.
Commun. 12, 633 (2021).

38. Vargas-Irwin, C. E. et al. Watch, imagine, attempt: motor cortex
single-unit activity reveals context-dependent movement
encoding in humans with tetraplegia. Front. Hum. Neurosci. 12,
450 (2018).

39. Dushanova, J. & Donoghue, J. Neurons in primary motor cortex
engaged during action observation. Eur. J. Neurosci. 31, 386–398
(2010).

40. Soechting, J. F. & Lacquaniti, F. Invariant characteristics of a
pointing movement in man. J. Neurosci. 1, 710–720 (1981).

41. Viviani, P. & Terzuolo, C. Trajectory determines movement
dynamics. Neuroscience 7, 431–437 (1982).

42. Lacquaniti, F., Terzuolo, C. & Viviani, P. The law relating the
kinematic and figural aspects of drawing movements. Acta
Psychol. 54, 115–130 (1983).

43. Edelman, S. & Flash, T. A model of handwriting. Biol. Cybern. 57,
25–36 (1987).

44. Mussa-Ivaldi, F. A., Giszter, S. F. & Bizzi, E. Linear combinations of
primitives in vertebrate motor control. Proc. Natl Acad. Sci. USA
91, 7534–7538 (1994).

45. d’Avella, A., Saltiel, P. & Bizzi, E. Combinations of muscle
synergies in the construction of a natural motor behavior. Nat.
Neurosci. 6, 300–308 (2003).

46. Okorokova, E., Lebedev, M., Linderman, M. & Ossadtchi, A. A
dynamical model improves reconstruction of handwriting from
multichannel electromyographic recordings. Front. Neurosci. 9,
389 (2015).

47. Lebedev, M. A. et al. in Brain–Computer Interface Research: A
State-of-the-Art Summary 8 (eds Guger, C. et al.) 11–23 (Springer,
2020).

48. Linderman, M., Lebedev, M. A. & Erlichman, J. S. Recognition of
handwriting from electromyography. PLoS ONE 4, e6791 (2009).

49. Jiang, H. et al. Short report: surgery for implantable
brain-computer interface assisted by robotic navigation system.
Acta Neurochir. 164, 2299–2302 (2022).

50. Qi, Y., Liu, B., Wang, Y. & Pan, G. Dynamic ensemble modeling
approach to nonstationary neural decoding in brain-computer
interfaces. Adv. Neural Inf. Process. Syst. 547, 6089–6098 (2019).

51. Qi, Y., Zhu, X. & Xiong, X. Human motor cortex encodes complex
handwriting through a sequence of stable neural states: source
code. Zenodo https://zenodo.org/records/14865736 (2025).

Acknowledgements
We thank Xiang Li, Xufei Li, J. Yan, H. Wu, J. Qiao and Y. Hao for the
technical support on the BCI system. This work was supported
by grants from the National Key R&D Program of China (number
2018YFA0701400 (Y.W.)), the Key R&D Program of Zhejiang (number
2022C03011 (Y.W.) and 2023C03001 (Y.Q.)), the National Natural
Science Foundation of China (number 62336007 (Y.W.) and number
62276228 (Y.Q.)), the Zhejiang Provincial Natural Science Foundation
of China (number LR24F020002 (Y.Q.)) and the Starry Night Science
Fund of Zhejiang University Shanghai Institute for Advanced Study
(number SN-ZJU-SIAS-002 (Y.W.)). The funders had no role in study
design, data collection and analysis, decision to publish or preparation
of the paper.

Author contributions
Y.Q. conceived the project, proposed the state-dependent encoding
model and TFC algorithm, designed the experiment, collected and
analysed the data, and wrote the paper. X.Z. contributed to data
analysis, conducted simulations and wrote the paper. X.X. contributed
to the experimental system, collected and analysed the data, and
wrote the paper. X.Y. contributed to data collection. N.D. and H.W.
contributed to the paper writing. K.X., J. Zhu and J. Zhang contributed
to the experiment design and implementation. Y.W. supervised the
project and contributed to the paper writing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41562-025-02157-x.

Correspondence and requests for materials should be addressed to
Yu Qi, Junming Zhu or Yueming Wang.

Peer review information Nature Human Behaviour thanks Elizaveta
Okorokova, Marc Schieber and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports
are available.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/nathumbehav
https://zenodo.org/records/14865736
https://doi.org/10.1038/s41562-025-02157-x
http://www.nature.com/reprints

Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02157-x

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional a#iliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share

adapted material derived from this article or parts of it. The images
or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

http://www.nature.com/nathumbehav
http://creativecommons.org/licenses/by-nc-nd/4.0/

nature human behaviour

https://doi.org/10.1038/s41562-025-02157-xArticle

Human motor cortex encodes complex
handwriting through a sequence of stable
neural states
In the format provided by the
authors and unedited

Supplementary information

https://doi.org/10.1038/s41562-025-02157-x

Supplementary Information

SUPPLEMENTARY FIGURES .. 2

SUPPLEMENTARY TEXT .. 9

1 DATA COLLECTION SESSIONS ... 9

2 NEURAL REPRESENTATION OF HANDWRITING .. 10

2.1 THE TUNING BEHAVIOR OF NEURONS (FIG. 2A) ... 10
2.2 THE RASTERS OVERLAID ON CHARACTERS (FIG. 2B, 2C, 2D, S2A, S2B) 11

3 IDENTIFICATION OF STABLE STATES ... 11

3.1 SIMULATION FOR TFC EVALUATION (FIG. S3A, S3B) .. 11
3.2 IDENTIFYING STABLE STATES WITH TFC (FIG. S2C, S3F) .. 12
3.3 THE STATE-TRANSITION PATTERNS (FIG. S3D, S3E) ... 13

4 STATE-DEPENDENT NEURAL ENCODING OF HANDWRITING .. 13

4.1 NEURAL ENCODING LOSS WITH DIFFERENT MODEL NUMBERS IN TFC (FIG. 3B, 3C, 3D, 3E) 13
4.2 THE PAIR-WISE ENCODING LOSS ACROSS STATES (FIG. 3F) .. 14
4.3 DIRECTIONAL TUNING CURVES IN DIFFERENT STATES (FIG. 2B, 2C, 2D, 5B, 5C) 14

5 STATE-DEPENDENT DECODING OF HANDWRITING TRAJECTORIES 15

5.1 PARTICLE-BASED ESTIMATION FOR THE STATE-DEPENDENT DECODER 15
5.2 STATE PREDICTION ACCURACY (FIG. S5A, S5B) .. 15
5.3 VISUALIZATION OF DECODED WRITING TRAJECTORIES (FIG. 6B, S6A) 16
5.4 DETAILS OF STATE-DEPENDENT DECODING OF HANDWRITING (FIG. 6C, 6D, S6B) 17
5.5 DECODING PERFORMANCE WITH SUA AND MUA (FIG. S5C) ... 18
5.6 CROSS SESSION/DAY DECODING PERFORMANCE (FIG. S5D) .. 18
5.7 ONLINE DECODING SETTINGS AND DELAY ANALYSIS ... 18

Supplementary Figures

Supplementary Fig. 1 | Example of neural signal recordings and the neural representation of
handwriting. a, Illustration of spiking activity recorded from each microelectrode array during a 3-
minute window, captured on the 1402nd day after array implantation. b, Statistics of single unit
numbers for both arrays across 20 sessions (M±SD). There were 137.3±15.8 units after offline
spike sorting with Array A and B together (with 42.6±11.2 for Array A and 94.7±15.2 for Array B,
n = 20 sessions). c, Neural activity in the top 2 principal components is shown for three example
characters, 15 repetitions for each character. The color scale is normalized within each panel
separately for visualization.

Array A

Array B
Array A Array B

Channels with firing rate > 2Hz

a

2.1 ms
330 !V

Anterior

Posterior

Lateral Medial

Array-A Array-B c

PC 1

PC 2

PC 1

PC 2

PC 1

PC 2

!
1

2
3

Low

High
PC score

"
1

2
3

4

1

#
1

2
3

(wàn)
Ten thousand

(shǒu)
Hand

1

15

Trials

4
5

1
2

1
2

1

3
2

1

3
4 !2

1

34 5

2
1

3
2

1

4
3
2

1

(kě)
OK

Arra
y A

+B

Arra
y A

Arra
y B

0

50

100

150

N
eu

ro
n

nu
m

b

suppfig1.pdf

Supplementary Fig. 2 | Examples of neuronal responses and state segmentation during

handwriting of different contents. a, Illustrative examples showcasing the neural response of a

simple-tuning neuron. The neuron demonstrates a consistent preferred direction of down left, while

it only selectively fires at part of down left trajectories. This neural activity can be explained by a

state-dependent model, where each state shares a consistent preferred direction with diverse

modulation depth. b, Similar to a, but with a complex-tuning neuron, this neuron exhibits divergent

preferred directions and fires in both leftward, rightward, and downward trajectories. This neural

activity can be explained by a state-dependent directional tuning model where the preferred

direction shifts across states. c, State-segmentation results with the TFC method across different

characters in three repetitions.

Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

Simple-tuning
neuron

R2=0.36 FD=2.12

Complex-tuning
neuron

R2=0.0034 FD=2.03

a b c State-segmentation
by TFC

each color represents a state

!
1
2

3

"
1

2
3

#
1

2
3

4 5
1

$2 3
4

%12
34

5
1

&2 34

5

'1 2
3

4 5
6

(
1

2 34
5

6

)1
2
34

5

*1
2

3

+
1

2
3

,
1

2 34

5
6

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1 230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1 230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1 230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

Firing rate
(normalized)

[0.2, 0.4)
< 0.2

[0.4, 0.6)
[0.6, 0.8)
≥ 0.8

1

1

1

1

1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1 230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

11

3 1

51 2

7 1

9 1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

l1
m1
n1
r1
s1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1 230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

230724S3-err0.31137-pack1 2 3-group1 1 1 1 1 1 1 1 1 1-smooth5-iter43-keep0.1-sequence1

States

suppfig2.pdf

Supplementary Fig. 3 | Evaluation of the TFC algorithm in writing state identification. a,
Simulation experiment assessing the TFC algorithm's efficacy in correctly identifying distinct mode
(state) and mode (state) switch processes during handwriting (see details in Supplementary Text). b,
State identification accuracy under varying signal-to-noise ratios (SNR). c, Statistics of the length
of states with different selections of "!"##$% . d, The state-transition matrices with three non-
overlapping character sets (session 220623-S5). Each element (i, j) indicates the state transfer
probability from state i to state j. The diagonal values are set to 0. e, The similarity of state-transition
matrices of each pair of non-overlapping character sets within sessions (n = 18), measured by the
Kendall's #& value. The Kendall's #& values are significantly higher than the shuffle condition
(paired two-tailed t-test, t(17) = 18.21, P = 1.373E-12, Cohen’s d = 6.82), indicating state-transition
patterns independent of character sets. f, The state sequences during writing three exemplar strokes.
We only focused on the highlighted strokes (colored), and the other parts of the characters were left
gray. Consistent state sequences were observed when writing the same stroke, regardless of the
Chinese character in which the stroke appeared.

a b

SNR=1
SNR=1

simulated signal
SNR=1

SNR=50
SNR=50

simulated signal

SNR=20
SNR=20

simulated signal

SNR=10
SNR=10

simulated signal

Ground truth
GT

simulated signal
TF

C
id

en
tif

ie
d

TFC identification accuracy

c
50 40 30 20 10 1

0.0

0.5

1.0

SNR (dB)

A
cc

ur
ac

y

1 2 3 4 5 6 7 8 9 10
0

200

400

lsmooth

Le
ng

th
 p

er
 s

ta
te

 (m
s)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Character set 1

Next state

C
ur

re
nt

 s
ta

te

0

0.02

0.04

0.06

0.08

0.10

0.12

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Character set 2

Next state

C
ur

re
nt

 s
ta

te

0

0.02

0.04

0.06

0.08

0.10

0.12

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Character set 3

Next state

C
ur

re
nt

 s
ta

te

0

0.02

0.04

0.06

0.08

0.10

0.12

d e

Random TFC
0.0

0.2

0.4

0.6

0.8

K
en

da
ll's

 τ A

✱✱✱✱

Shuffle State transition

Vertical stroke Vertical hook stroke Angled hook stroke
f

States! "
$

%
&

干
个

于
可可
于 同同同

向向向向向

suppfig3.pdf

P < 0.001

Supplementary Fig. 4 | The state-dependent encoding model better predicts neuronal activities
when writing different content. a-c, The state-dependent directional tuning model significantly
enhances the R2 for reliably tuned neurons (n = 30) with the writing of English letters (a, State-
dependent vs. Random states: paired two-tailed t-test, t(29) = 6.747, P = 2.098E-7, Cohen’s
d = 0.997; State-dependent vs. State-independent: paired two-tailed t-test, t(29) = 7.718, P = 1.642E-
8, Cohen’s d = 1.348), shapes (b, State-dependent vs. Random states: paired two-tailed t-test, t(29)
= 6.747, P = 2.098E-7, Cohen’s d = 0.997; State-dependent vs. State-independent: paired two-tailed
t-test, t(29) = 7.718, P = 1.642E-8, Cohen’s d = 1.348), and numbers (c, State-dependent vs. Random
states: paired two-tailed t-test, t(29) = 6.747, P = 2.098E-7, Cohen’s d = 0.997; State-dependent vs.
State-independent: paired two-tailed t-test, t(29) = 7.718, P = 1.642E-8, Cohen’s d = 1.348).

a b c

State-
dependent

Random
states

State-
independent

0.0
0.2
0.4
0.6
0.8
1.0

English letter

R
el

ia
bl

e
ne

ur
on

 R
2

✱✱✱✱

✱✱✱✱

P < 0.001

P < 0.001

State-
dependent

Random
states

State-
independent

0.0
0.2
0.4
0.6
0.8
1.0

Shape

R
el

ia
bl

e
ne

ur
on

 R
2

✱✱✱✱

✱✱✱✱

P < 0.001

P < 0.001

State-
dependent

Random
states

State-
independent

0.0
0.2
0.4
0.6
0.8
1.0

Number

R
el

ia
bl

e
ne

ur
on

 R
2

✱✱✱✱

✱✱✱✱

P < 0.001

P < 0.001

suppfig4.pdf

Supplementary Fig. 5 | State prediction with the state-dependent decoding model. a, State
identification with TFC, with the training set (first line), test set (second line, without model
learning, directly applied the learned models during training). The third line illustrates the state
predictions in a state-dependent decoding process with the neural data only. b, The state prediction
accuracy of the state-dependent neural decoder is shown in the histogram (n = 800, 22 sessions
with leave-one-repeat-out cross-validation; please see Supplementary Text for details). c,
Comparison of handwriting decoding performance with single-unit activity (SUA, offline sorted)
and multi-unit activity (MUA, unsorted). The mean difference of R2 was minor (0.33 vs. 0.30 for
state-dependent and 0.10 vs. 0.06 for state-independent, n = 18 sessions. State-independent: paired
two-tailed t-test, t(17) = 4.453, P = 3.49E-4, Cohen’s d = 0.426; State-dependent: paired two-tailed
t-test, t(17) = 9.054, P = 6.507E-8, Cohen’s d = 0.330). d, The cross-session/day decoding
performance with the state-dependent decoder, with a month time span.

State Identification
Neural & Writing data
(TFC / training data)

State Identification
Neural & Writing data

(TFC / test data)

State Prediction
Neural data only

(DyEnsemble / test data)

a b

0.0 0.5 1.0

0

100

200

300

Histogram of dominant model state predict acc

Bin Center

DyEnsemble-hard
Shuffle-hard

300

200

100

0

0.5 1.00.00.0 0.5 1.0

0

100

200

300

Histogram of dominant model state predict acc

Bin Center

DyEnsemble-hard
Shuffle-hard

0.0 0.5 1.0

0

100

200

300

Histogram of dominant model state predict acc

Bin Center

DyEnsemble-hard
Shuffle-hard

0.0 0.5 1.0

0

100

200

300

Histogram of dominant model state predict acc

Bin Center

DyEnsemble-hard
Shuffle-hard

DyEnsemble

Shuffle

0.0 0.5 1.0

0

100

200

300

Histogram of dominant model state predict acc

Bin Center

DyEnsemble-hard
Shuffle-hard

Prediction accuracy

C
ou
nt

c d

State-
independent

State-
dependent

0.0

0.2

0.4

0.6

0.8

R
2

MUA SUA

✱✱✱ ✱✱✱✱

suppfig5.pdf

P < 0.001 P < 0.001

Supplementary Fig. 6 | Comparison of state-dependent and state-independent handwriting
decoding with different writing contents. a, Comparison of the decoded handwriting trajectories.
b, Comparison of the decoding performance with the R2 (Character: paired two-tailed t-test, n = 36,
t(35) = 12.23, P = 3.385E-14, Cohen’s d = 2.232; English letter: paired two-tailed t-test, n = 30, t(29)
= 11.38, P = 3.229E-12, Cohen’s d = 2.271; Shape: paired two-tailed t-test, n = 15, t(14) = 23.05,
P = 1.567E-12, Cohen’s d = 6.341; Number: paired two-tailed t-test, n = 30, t(29) = 9.012, P =
6.614E-10, Cohen’s d = 1.396).

suppfig6.pdf

a

b

G
ro

un
d

tru
th

St
at

e-
in

de
pe

nd
en

t
St

at
e-

de
pe

nd
en

t

ShapeEnglish letter NumberChinese character

Character English letter Shape Number
0.0

0.5

1.0

Writing Type

D
ec

od
in

g
R

2

State-independent State-dependent
✱✱✱✱ ✱✱✱✱ ✱✱✱✱ ✱✱✱✱P < 0.001 P < 0.001 P < 0.001 P < 0.001

State-independent State-dependent

Supplementary Fig. 7 | Neural processing architecture of handwriting. Sophisticated
handwriting is divided into stable states, each corresponding to a stroke fragment. Under each state,
movement is controlled through a state-specific neural ensemble, which possibly consists of two
types of neurons. The complex tuning neurons encode a fragment of the movement trajectory and
are connected to a set of simple tuning neurons, which directly control the movement direction at
the current time moment.

Movement plan

…

…

…… …

!

Σ Population vector

Writing controlled in
a sequence of states

Neurons with
state-dependent

tuning

Neurons with
stable tuning

Activated links
Inactivated links

State
modulation

Movement
modulation

0 2!
Fi
rin
g
ra
te

Direction

A state-dependent, hierarchical neural architecture for handwriting control

Movement control

…
! ! !万 万 万

Primitive state sequence

!万

1 2 4 5

Dynamic connection

suppfig7.pdf

Supplementary Text

1 Data collection sessions

We scheduled 2-3 experiment days in a week, and each experimental day contained 2-3 sessions.
During a session, the participant sat in a wheelchair in an upright position, with a pillow placed to
support his head and neck. His hand rested on a dinner board in front of him. A computer monitor
was placed about 1 meter in front of him, indicating which character to write. The experimental
sessions used for analysis in this work are listed in Supplementary Table 1. The sessions used in
each figure are listed in Supplementary Table 2.

Supplementary Table 1. Data sessions included in this study.

Session !! !" Characters P

220601-S1 30 3 成吃此的定对多法还好和会看来里没那你年如时是我行学永有者这作

CW

220601-S2 30 3 成吃此的定对多法还好和会看来里没那你年如时是我行学永有者这作

220607-S1 30 3 把本但当地点动而发分过后话回活间见经开老们身世所同位用知总走

220607-S2 30 3 把本但当地点动而发分过后话回活间见经开老们身世所同位用知总走

220609-S1 30 3 爱被常到道得第都高给国果孩家理美面其起前亲使说她西现些样因种

220609-S2 30 3 爱被常到道得第都高给国果孩家理美面其起前亲使说她西现些样因种

220610-S1 30 3 不出次从大儿尔方个公几可名女去什生手他天头外为问无也在长中自

220610-S2 30 3 不出次从大儿尔方个公几可名女去什生手他天头外为问无也在长中自

220623-S4 30 3 报并场处传风告各更光合何画欢机近决军空拉利论罗妈男品求全任实

220623-S5 30 3 报并场处传风告各更光合何画欢机近决军空拉利论罗妈男品求全任实

220630-S1 30 3 变表别读房放非该花或结界金觉科苦快连林流命母呢轻师思体条往物

220630-S2 30 3 变表别读房放非该花或结界金觉科苦快连林流命母呢轻师思体条往物

220701-S1 30 3 安必边布车达代电东夫关化即加交克吗民目内平却让色声失始受书司

220701-S2 30 3 安必边布车达代电东夫关化即加交克吗民目内平却让色声失始受书司

220707-S1 30 3 巴白比产打反父火及记今乐立马片气切认水死四岁太听万王五向写由

220707-S2 30 3 巴白比产打反父火及记今乐立马片气切认水死四岁太听万王五向写由

220708-S1 30 3 完先笑信星性许言业医音应友语元员远约月运再早则怎战找至主字坐

220708-S2 30 3 完先笑信星性许言业医音应友语元员远约月运再早则怎战找至主字坐

221027-S1 6 15 川万可什公手 CW

230327-S2 8 5 浙江大学脑机接口 SW

230511-S3 32 3 埋坡坏坤环理玻珅权杈杯枓杆种和私科秆汉叹仅扠钗汊呔忲汰钛伏吠汱状 CW

230724-S3 37 3 干个可手他它同向写也于字, 5 shapes, 10 numbers, 10 English letters (k-t) CW

* !!: The number of characters	
* !": The number of repeats

* P: Paradigm

* CW: Single-character writing with visual guidance paradigm

* SW: Sentence writing with visual guidance paradigm

Supplementary Table 2. List of all data collection sessions used for the figures

Figures Sessions

Fig. 2a, 3f, 5a, 5b, 5c, 5d, 5e, S1b, S3c

220601-S1; 220601-S2; 220607-S1; 220607-S2; 220609-S1;

220609-S2; 220610-S1; 220610-S2; 220623-S4; 220623-S5;

220630-S1; 220630-S2; 220701-S1; 220701-S2; 220707-S1;

220707-S2; 220708-S1; 220708-S2; 230511-S3; 230724-S3

Fig. 2b, 2c, 2d, S2a, S2b, S2c, S3f, S4a, S4b,

S4c
230724-S3

Fig. 3b, 3c, 3d, 3e, 3h, 4a, 4b, 4c, 6c, 6d, S3e,

S5c, S5d

220601-S1; 220601-S2; 220607-S1; 220607-S2; 220609-S1;

220609-S2; 220610-S1; 220610-S2; 220623-S4; 220623-S5;

220630-S1; 220630-S2; 220701-S1; 220701-S2; 220707-S1;

220707-S2; 220708-S1; 220708-S2

Fig. 3g 220601-S1

Fig. 6b, S5a, S5b, S6a, S6b 230327-S2

Fig. S1c 221027-S1

Fig. S3a, S3b 220610-S1

Fig. S3d 220623-S4

2 Neural representation of handwriting

2.1 The tuning behavior of neurons (Fig. 2a)

To evaluate the tuning behavior of neurons, we assessed it using two metrics: R' and FD. A total
of 20 experimental sessions were included (please refer to Supplementary Tables 1 and 2), involving
2850 neurons. Note that, since we plotted neurons from different sessions together, it may contain
reduplicated neurons appeared at multiple sessions.

The R' of one neuron represents the proportion of its neural variance explained by the directional
tuning model. The spiking probability P(spike∣velocity) is modeled as a linear function of the
velocity components along the x and y axes, given by:

((*+,-.|0."12,34) = 7(+ 7)0) + 7*0* (1)

where 0) and 0* are the velocity along :- and 4-axes, respectively, and 7(, 7) , 7* are the

model parameters. The R' was computed by:

R
'
= 1 −

Σ+(4+ − 4=+)
'

Σ+(4+ − 4>)
'

(2)

where 4+ is the firing rate at time step - of the analyzed neuron, 4=+ is the firing rate estimated
by the directional tuning model at time step -, and 4> is the average firing rate of this neuron.

The FD (Fisher’s discriminant value) is a metric indicating one neuron’s discriminative ability (or
reliability) of the tuning patterns by comparing the inter-character distance to the intra-character
distance of neural representations, which was defined as:

FD, =

@-.$/0
,

@-.$01
,

=

Σ2!3,,2"5,(46 − 4")
'
/B(6,")

Σ2!3,,2#3,(46 − 4.)
'
/B(6,.)

(3)

FD =

1

B2

Σ2FD2 (4)

where 2 denotes a certain Chinese character and B2 denotes the total number of the target
characters. The term @-.$/0, represents the average neural distance between different characters ,
while @-.$01, demotes the average neural distance between different repetitions of the same
character. ",F, G are trial indexes and Σ2!3,,2"5,(46 − 4")

' refers to the sum over all
(",F)	pairs, which satisfy trial " ’s target I6 is character 2 while trial F’s target I" is not
character 2. B(6,") represents the total number of (",F)	pairs that satisfy this condition. A high
FD value indicates a high discriminative ability of neuronal response, namely consistent in
repetitions while discriminative with different characters.

2.2 The rasters overlaid on characters (Fig. 2b, 2c, 2d, S2a, S2b)

To plot a raster overlaid on a character, spike counts of the example neurons were first binned into
50 ms bins. Then, max-min normalization was applied to the neuronal firing rate in bins. Next, the
sequence of neural responses was plotted on the corresponding trajectory of the character. Here, the
handwriting trajectory is the same as the visual instruction in the video. Only strong neural responses
above a certain threshold (0.2) were displayed for clearer visualization.

3 Identification of stable states

3.1 Simulation for TFC evaluation (Fig. S3a, S3b)

To validate the reliability of the TFC algorithm, we first conducted experiments on simulated data,
as shown in Fig. S3a and S3b. The simulated experiments utilized the character set from 220610-
S1 consisting of 30 Chinese characters. Initially, each character was randomly divided into multiple
segments, with lengths varying between 5 and 20 bins. Subsequently, we randomly generated
B9:;:< = 10 encoding models, supposing there are 10 states in the writing process. Each segment
was then randomly assigned to one encoding model, and the corresponding neural signals were
generated using this model and the kinematic segment. Finally, the neural signals for each character
were constructed by concatenating the neural signals generated by different encoding models, with

the addition of Gaussian noise at different levels. Note that we generated three sets of neural signals
for each character, with the same model assignments but random noise to mimic the real
experimental settings.

Specifically, for each encoding model, we first generated cosine tuning curves for @* = 100
simulated neurons by drawing their preferred directions (PDs) randomly from a uniform distribution
over [0, 2L] . Baseline firing rates were drawn from a uniform distribution over [1, 2.5], and
modulation depths were drawn from a uniform distribution over [0.005, 0.025], where these
parameter ranges were determined based on observations of real data. Then the encoding model can
be constructed as a linear mapping matrix N ∈ ℝ=×(?@A$) , where @) = 2 is the dimension of
kinematics (writing velocities along x- and y-axes), 1 denotes the dimension of bias. Here, the first
column of the mapping matrix B is the baseline firing rate of each neuron, while the second and
third columns of B are the sine and cosine values of neuron PDs, multiplied by the corresponding
modulation depth. The above process was repeated 10 times to obtain 10 encoding models. These
encoding models allow us to predict the firing rates based on the kinematic inputs.

Different levels of Gaussian white noise were added to the final constructed neural signals,
according to the signal-to-noise ratio (SNR):

SNRBC = 10 log?(V

(9DEF;G

(FHD9<

W = 10 log?(

Σ+4+
'

Σ+(4X+ − 4+)
'

(5)

where 4+ is the clean neural signals at time step -, and 4X+ is the neural signals with added noise,
which can be obtained directly from the function awgn(.) in MATLAB. In our simulation, we set up
5 noise levels of SNRAI = 10, 20, 30, 40, ZG@	50, respectively.

After generating the simulation data, we then used the TFC algorithm to identify these 10 states
using [= 10 models. The error smooth window size "9JHH:K was 1. In Fig. S3b, the accuracy of
model assignment was reported according to:

Z22ℋ" =

max_ ℋ̀",?, ℋ̀",', … , ℋ̀",M , … , ℋ̀",=%&'&(b

ℋ̀"
(6)

Z22 =

∑ Z22ℋ"
N
"3?

[
(7)

where ℋ̀",M represents the number of overlapping indices between the data selected by model ℋ"
and the data of state j. ℋ̀" denotes the length of data selected by model ℋ".

3.2 Identifying stable states with TFC (Fig. S2c, S3f)

We used the TFC algorithm to analyze real data and segmented the writing process into stable states.
Fig. S2c, S3f shows the examples from 230724-S3. Before applying the TFC algorithm, the spike
counts were divided into 200 ms bins using a sliding window with a step of 50 ms. A moving average
of 10 bins was then applied for smoothing. The neural signals corresponding to the writing phase
were extracted for analysis. The TFC algorithm was configured with [= 10 models. The error
smooth window size "9JHH:K was set to 5 bins.

3.3 The state-transition patterns (Fig. S3d, S3e)

To assess whether state transitions exhibit temporal dependencies, i.e., whether one state comes
after another randomly or some states are more likely to come after a certain state, we divided the
data from each session into three non-overlapped subsets and calculated the state transition
probabilities for each subset. For each state transition matrix, we removed the diagonal elements
that reflect self-transition within a state since they usually contain outlying large values. In S3d,
we visualized the state transition matrices for the three subsets (with different character sets each)
from an example session.

Subsequently, we computed the pairwise Kendall's #& values between the three subsets for all 18
sessions, where #& ranges from [-1, 1], with higher values indicating greater similarity between
the transition matrices. To obtain the shuffled control, Kendall's #&	was recalculated after
randomly shuffling the transition matrices.

4 State-dependent neural encoding of handwriting

4.1 Neural encoding loss with different model numbers in TFC (Fig. 3b, 3c, 3d, 3e)

To investigate the relationship between the neural encoding capability of the TFC algorithm and the
number of specified models, we varied the number of models from 1 to 100 and plotted the resulting
loss curve for neural encoding. The experiment included 18 sessions of data, as described in
Supplementary Tables 1 and 2. Data were first divided into a training set and a test set, with three-
fold cross-validation with no overlapping characters. That is, each session contains 30 characters
with 3 repeats, and we divided them into 3 folds, and each fold contains 20 characters for training
and the other 10 characters for test. The figure plots the average encoding loss for both the training
set and test set with each model number (n = 18 sessions), with the error bar denoting the standard
deviation value.

Besides, we also plotted the loss decrease for both the training set and test set, which is calculated
from the difference of the loss value. To choose an appropriate number of models, we computed the
BIC (Bayesian Information Criterion) value using the following equation:

BIC = −2 ln(k) + - ∙ ln(G) (8)

where k is the likelihood of the model, and - is the number of parameters in the model, G is the
number of data points. Since we already have the value of the encoding loss, i.e., the mean squared
error (MSE), the only thing we need to do is to calculate the "G(k). Assuming the residuals follow
a Gaussian distribution with zero mean, then the variance can be estimated using the mean squared
error, MSE. Thus, the log-likelihood can be calculated as follows:

ln(k) = lnn

1

√2Lp
'
.
O
(*)O**P)+
'Q+

.

-3?

	 (9)	

																											= r ln

1

√2Lp
'
.
O
(*)O**P)+
'Q+

.

-3?

	

																											= r −lns2Lp
'
−

.

-3?

(4- − 4Rt)
'

2p
'

	

																											= −

G

2
ln(2Lp

'
) −

1

2p
'
r (4- − 4Rt)

'
.

-3?

		

																											= −

G

2
ln(2Lp

'
) −

G

2
	

																											= −

G

2
ln(2L ∙ MSE) −

G

2
	.

Here, 4- is the ground truth of neural signals, and 4Rt is the neural signals estimated by our models.
So the final BIC can be calculated directly from the encoding loss:

BIC = G ∙ ln(2L ∙ MSE) + G + - ∙ ln(G). (10)

4.2 The pair-wise encoding loss across states (Fig. 3f)

In Fig. 3f, we calculated the encoding loss between each pair of states, namely the models in TFC.
Our analysis was based on 20 experimental sessions, where each session involved the collection of
at least 30 Chinese characters with 3 repetitions (please refer to Supplementary Tables 1 and 2). We
employed the leave-one-repeat-out method, resulting in a total of 60 runs of the TFC algorithm. And
the reported loss was the average across these runs.

Here, we calculate each pair of encoding loss ℒ(,, y) between state , and state y. The computation
of ℒ(,, y) involved encoding the kinematic data selected by model ℋ- using model ℋM .
Subsequently, we calculated the mean squared error between the encoded neural signals and the
neural signals selected by model ℋ- . Then the final loss was averaged over all time bins and
neurons. This process can be mathematically expressed as:

ℒ(,, y) = rrz{|ℋ) −ℋM_}ℋ)b~
'

Sℋ)

+3?

A-

.3?

. (11)

Here, |ℋ) ∈ ℝ
A-×Sℋ) represents the neural signals selected by model ℋ- , ℋM(∙) denotes the

encoding function of model ℋM, and }ℋ) corresponds to the kinematic data selected by model ℋ-.

4.3 Directional tuning curves in different states (Fig. 2b, 2c, 2d, 5b, 5c)

To closely examine the responses from reliably tuning neurons (R2 ≥ 0.1 and FD ≥ 1.4, n = 179)
out of 20 experimental sessions, we plotted the tuning curves of these neurons with and without
considering the states. Fig. 5b and 5c display four example neurons from session 230724-S3,
including two simple-tuning neurons and two complex-tuning neurons.

Regarding the specifics of drawing the tuning curve, the movement kinematics during writing were
meticulously partitioned into eight directional intervals (0°~45°, 45°~90°, … , 315°~360°). For each
interval, we computed the average firing rate of the neuron at every corresponding time point. The
resulting graph illustrates the firing rates for each angle and its subsequent 45° range. Furthermore,
we applied a cosine function to fit the mean firing rates and visually represented it in the graph.

For each tuning curve, we used the thickness of the curve to reflect the data size; the thicker the
curve, the more data points were included for that state. Additionally, we used the color of the curve
to represent the performance of the neurons; the darker the color, the higher the R' of the neuron
within that state.

Fig. 2b, 2c, 2d plot the directional tuning curves without the fitting step of four example neurons
from 220324-S2, 220724-S3, and 220724-S3, respectively.

5 State-dependent decoding of handwriting trajectories

5.1 Particle-based estimation for the state-dependent decoder

The DyEnsemble model can be solved using a particle filtering algorithm, which estimates a

posterior distribution with a set of particles and their associated weights. Specifically, to estimate

+(:+|4(:+) , two conditional probabilities of +(:+|ℎ+(·) = ℋ"(∙), 4(:+) and

+(ℎ+(·) = ℋ"(∙)|4(:+) should be estimated.

Let’s consider time step - , where we already have prior information

+(ℎ+(·) = ℋ"(∙)|4(:+O?),F = 1,… ,[and a set of particles with weights ÉÑ+O?-
, Ö+O?

-
Ü
-3?

=.'/ ,

where BU;V represents the size of the particle set. Here, Ö+O?- denotes the ,$% particle with weight

Ñ+O?
- at time - − 1. The particles can be randomly initialized, or given by the kinematic data

from the training set. We used the kinematic data of the training set in this study. The term of

+(:+|ℎ+(·) = ℋ"(∙), 4(:+) can be approximated by:

+(:+|ℎ+(·) = ℋ"(∙), 4(:+) ≈ à
-3?

=.'/
Ñ",+
-
â_:+ − Ö+

-
b. (12)

Here, â(∙) represents the Dirac function, and the term Ñ",+- is the normalized weight of particle

Ö+
- when using the encoding model ℋ"(·), and à

-3?

=.'/
Ñ",+
-

= 1.

The term of +(ℎ+(·) = ℋ"(·)|4(:+) can be recursively computed given

+(ℎ+(·) = ℋ"(·)|4(:+O?) and +"(4+|4(:+O?) , and the particle-based approximation for

+"(4+|4(:+O?) is given by:

+"(4+|4(:+O?) ≈ à
-3?

=.'/
Ñ",+O?
-

+"_4+äÖ+
-
b. (13)

Here, +"(4+|Ö+-) represents the Gaussian likelihood of particle Ö+- when using the encoding

model ℋ"(·).

5.2 State prediction accuracy (Fig. S5a, S5b)

To verify the accuracy of the DyEnsemble state predictions, we conducted experiments on 22
sessions. For each session, we first applied three-fold cross-validation to divide it into training and
test sets. After the division, we followed three steps:
1. State Identification on the Training Set Using TFC: We used the TFC method to identify states

in the training set by inputting neural and writing signals, resulting in state segmentation

(corresponding to the first row in Fig. S5a).
2. State Identification on the Test Set Using TFC: Similarly, the TFC method was applied to the

test set using the same inputs (neural and writing signals). The results from this step served as
the ground truth for subsequent state predictions (corresponding to the second row in Fig. S5a).

3. State Prediction on the Test Set Using DyEnsemble: The DyEnsemble method was employed
to predict states in the test set, this time using only neural signals without writing signals.
DyEnsemble calculated the probability of each state based on the current neural signal input,
converting these probabilities into state weights. In the figure, colors represent the dominant
model at each time point, and the transparency indicates the weight of the dominant model
(corresponding to the third row in Fig. S5a).

Fig. S5a is an example of one repeat from session 230327-S2. Fig. S5b shows the statistical results

of all repeats across 22 sessions and [= 10 states (n = 800). Hard	weight	accuracy =

!consist(() 	/	!GT(() is a metric used to measure the accuracy of state predictions, where !,-(.) is

the number of time bins where the F:K model is the ground truth, and !/012324(.) is the number of

time bins where the F:K model is both the predicted dominant model and the ground truth.

Fig. S5b displays the distribution of the accuracy of DyEnsemble's state predictions (in purple)

compared to the distribution of accuracy after shuffling the predicted state weights (in grey). The

accuracy after shuffling is approximately at the basic level of a 10-class classification, around 1/10,

which is significantly different from the accuracy of DyEnsemble's state predictions.

5.3 Visualization of decoded writing trajectories (Fig. 6b, S6a)

We selected the four Chinese characters “脑机接口” (meaning: Brain-computer interface) to
illustrate the decoding performance in Fig. 6b. Two decoders were compared, with one state-
dependent decoder (DyEnsemble, see Methods for details) and a decoder without considering states
(Kalman filter). Initially, the spike counts were grouped into 200 ms bins using a sliding window
with a step of 50 ms. To smooth the signals, a moving average with a window size of 10 bins was
applied. For decoding, we employed a cross-validation approach known as leave-one-repeat-out.
This means that the preprocessed data was divided into training sets and test sets according to the
number of times each character was repeated. In each iteration, we used one repeat for test and the
remaining repeats for training.

For the DyEnsemble decoder, we first utilized the TFC algorithm to identify [= 10 states and
their associated models in the training data. The parameter "9JHH:K was set to 10, and the early-
stopping threshold ñ was set to 0.001. Subsequently, we used the dynamic ensemble algorithm to
calculate the weights for each model and predict the kinematic states based on the neural signals at
each time step during testing. The particles used in the algorithm were unique kinematic states from
the training set, and the sticking factor ó was set to 0.1.

For the Kalman filter (KF), we employed a velocity Kalman filter with a linear-Gaussian state-space
model:

:+ 	= 	ò:+O? + 7 +	ô+O? (14)

4+ = ö:+ 	+ 	õ+ (15)

where - denotes the time step index, :+ 	 ∈ 	ℝA$, s the kinematic state and @) 	= 	2 is the
dimensions of :+, including the writing velocities in X-axis and Y-axis. 4+ 	 ∈ 	ℝA- 	 is the neural
measurement and @* is the dimensions of 4+, determined by the number of neurons recorded in
this session. ô+ ∼ B(0, pW'), õ+ ∼ B(0, pX') are state transition noise and measurement noise.

The stroke trajectory was obtained by integrating the decoded velocities to visualize the characters.
The start point of each stroke was predefined with the knowledge of the character, i.e., we applied
the standard stroke start position with the Kai font of the character.

In Fig. S6a, we used data from the example session 230724-S3, which included four different types
of writing content: Chinese characters, English letters, shapes, and numbers. Apart from the
differences in writing content, all other decoding settings were consistent with those used in Fig. 6b.

5.4 Details of state-dependent decoding of handwriting (Fig. 6c, 6d, S6b)

To generate the statistical results for Fig. 6c, 6d, the decoding performance of the Kalman filter and
the DyEnsemble decoder was evaluated using 18 experimental sessions, consisting of 1620 trials
with 270 targets. For Fig. S6b, the decoding performance was assessed using one example session
(230724S3), which included different types of writing content: Chinese characters, English letters,
shapes, and numbers. Each writing type was decoded separately, using the leave-one-repeat-out test.

The results of Fig. 6c, 6d were offline decoding performance. The decoding was performed within
each session using the three-fold cross-validation with no overlapping characters. With the training
set, we first used the TFC to learn 10 encoding models, and these models served as the model pool
for the DyEnsemble decoder. With the training data and the model pool, the DyEnsemble estimated
the parameters for ù(∙) and ô+~B(0, pW'), and parameters of õY0, using the estimation residuals
of each encoding model in the pool. With these parameters, DyEnsemble can estimate the
handwriting velocity recursively online, given the incoming neural signals.

We evaluated the decoding performance of the strokes in characters. Two evaluation metrics were
used for the decoded velocity: root mean squared error (RMSE), and coefficient of determination
(R'). The formulas for these metrics are as follows:

	RMSE	 = ü
1

`
à+3?
S

(:+ − :=+)
' (16)

R
'
= 1 −

Σ+(:+ − :=+)
'

Σ+(:+ − :̅)
'
. (17)

In these formulas, :+ represents the velocity at time step - ∈ [1, `], :=+ represents the velocity
the decoder estimates at time step -, and :̅ is the average velocity of all time steps.

To calculate the final performance of each session, the metrics were averaged over all replicates. In
the graph, each data point represents the decoding result of a session (n = 18). To assess the

significance of the decoding performance between the two algorithms, a paired t-test was performed,
with P < 10-4 in terms of RMSE and R'.

5.5 Decoding performance with SUA and MUA (Fig. S5c)

To assess whether spike sorting step affects the results, we compared the decoding performance
between SUA- and MUA-based decoders. In Fig. S5c, the decoding performance (R²) of both
state-independent (Kalman filter) and state-dependent (DyEnsemble) decoders is shown for SUA
and MUA data. The dataset and testing protocol were identical to those used for Fig. 6c and 6d.

5.6 Cross session/day decoding performance (Fig. S5d)

To investigate the stability of neural activity over time, we evaluated the decoding performance
across sessions spanning one month. Due to fluctuations in the number of recorded neurons across
different days, we utilized MUA signals for decoding. In Fig. S5d, the matrix shows the cross-
session decoding performance (R²) using the DyEnsemble decoder. Each element in the
performance matrix at position (i, j) represents the decoding accuracy when training the model
using neural and kinematic signals from session i, and testing it on neural signals from session j.

5.7 Online decoding settings and delay analysis

We carried out online experiments that decoded the neural signals into handwriting trajectory with
the state-dependent decoder in real-time and output the decoded handwriting trajectory to a robotic
arm to evaluate the possibility of online handwriting BCIs.

In the online decoding process, neural signals were unsorted, and we used the thresholding approach
to detect spike events for each channel. The time bin was 10 ms without overlap for quick response.
The online experiment contains a training session and a test session. The training session used the
'sentence writing with visual guidance paradigm' (SW) without output to collect several sentences
to train the state-dependent decoder, and then the decoder was deployed for the online decoding
process in the second session (SW paradigm, with the robotic arm output). For the demonstration in
Supplementary Video 2, the training session was 230327-S1 and the test session was 230327-S2.
The detailed training and test contents are listed in Supplementary Table 3. The online decoding R2
was 0.51 for session 230327-S2.

Supplementary Table 3. Training and test sessions for online demonstration

Session !! !" Characters P

230327-S1 30 3 今天很开心我在写字浙江大学脑机接口你好他乡还吗明见外面气再 SW

230327-S2 8 5 浙江大学脑机接口 SW

The robotic arm was controlled by position signals (x, y, and z) at each 10 ms, to hold a pen and

write on a whiteboard. Chinese characters contain multiple strokes such that there were pen-lift and
pen movements between adjacent strokes. As the verification of the state-dependent encoding model,
we only decoded the movements of the stroke writing process and output the trajectories of strokes.
Thus, extra information was required to composite strokes into characters: 1) the start and end
timestamp of each stroke, and 2) the start position of each stroke on the board. In the proof-of-
concept demonstration, to know when each stroke started and ended, for each character, we adopted
the timestamps of the start and end for each stroke in the generated trajectory (synchronous to the
instruction video). The start position of each stroke was predefined according to the Kai font of the
character. During the online decoding process, at the end point of each stroke, the robotic arm
automatically lifted the pen and moved the pen tip to the start point of the next stroke.

The computation of neural decoding could be achieved in each 10 ms bins. The computational cost
for the state-dependent decoder was 11.8±3E-3 ms per bin with CPU only, and 4.15±2E-4 ms per
bin with GPU acceleration. We used GPU acceleration for online experiments. The workstation used
for computing was equipped with an AMD CPU (AMD Ryzen 5 5600G with Radeon Graphics, 3.90
GHz) and an NVIDIA GPU (NVIDIA GTX 1080), with 64G of memory.

During the online process, we observed a delay in robotic arm control. The delay was mostly due to
the movement of robotic arm between the writing of adjacent strokes. The first delay was caused by
the pen-tip lifting process, where after writing each stroke, the robotic arm should pull the pen tip 2
mm away from the whiteboard, move the pen to the start point of the next stroke, and then push the
pen tip to the whiteboard again. The pull and push process was additional for the robotic arm, such
that it caused a delay (about 300 ms per character). The second delay was the movement of robotic
arm from the end of the preceding strokes to the start of the succeeding strokes, which can be
uncertain, since the end points of the preceding strokes relied highly on the online decoding results.

